Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 33

1.

Organization of subcortical auditory nuclei of Japanese house bat (Pipistrellus abramus) identified with cytoarchitecture and molecular expression.

Ito T, Furuyama T, Hase K, Kobayasi KI, Hiryu S, Riquimaroux H.

J Comp Neurol. 2018 Dec 1;526(17):2824-2844. doi: 10.1002/cne.24529. Epub 2018 Oct 23.

PMID:
30168138
2.

Acoustic characteristics used by Japanese macaques for individual discrimination.

Furuyama T, Kobayasi KI, Riquimaroux H.

J Exp Biol. 2017 Oct 1;220(Pt 19):3571-3578. doi: 10.1242/jeb.154765. Epub 2017 Aug 4.

3.

Micro-endoscopic system for functional assessment of neural circuits in deep brain regions: Simultaneous optical and electrical recordings of auditory responses in mouse's inferior colliculus.

Yashiro H, Nakahara I, Funabiki K, Riquimaroux H.

Neurosci Res. 2017 Jun;119:61-69. doi: 10.1016/j.neures.2017.01.002. Epub 2017 Jan 7.

4.

Role of vocal tract characteristics in individual discrimination by Japanese macaques (Macaca fuscata).

Furuyama T, Kobayasi KI, Riquimaroux H.

Sci Rep. 2016 Aug 23;6:32042. doi: 10.1038/srep32042.

5.

Auditory brainstem responses of Japanese house bats (Pipistrellus abramus) after exposure to broadband ultrasonic noise.

Simmons AM, Boku S, Riquimaroux H, Simmons JA.

J Acoust Soc Am. 2015 Oct;138(4):2430-7. doi: 10.1121/1.4931901.

PMID:
26520325
6.

Auditory brainstem response of the Japanese house bat (Pipistrellus abramus).

Boku S, Riquimaroux H, Simmons AM, Simmons JA.

J Acoust Soc Am. 2015 Mar;137(3):1063-8. doi: 10.1121/1.4908212.

PMID:
25786921
7.

Rapid shifts of sonar attention by Pipistrellus abramus during natural hunting for multiple prey.

Fujioka E, Aihara I, Watanabe S, Sumiya M, Hiryu S, Simmons JA, Riquimaroux H, Watanabe Y.

J Acoust Soc Am. 2014 Dec;136(6):3389. doi: 10.1121/1.4898428.

PMID:
25480083
8.

Adaptive changes in echolocation sounds by Pipistrellus abramus in response to artificial jamming sounds.

Takahashi E, Hyomoto K, Riquimaroux H, Watanabe Y, Ohta T, Hiryu S.

J Exp Biol. 2014 Aug 15;217(Pt 16):2885-91. doi: 10.1242/jeb.101139.

9.

Prey pursuit strategy of Japanese horseshoe bats during an in-flight target-selection task.

Kinoshita Y, Ogata D, Watanabe Y, Riquimaroux H, Ohta T, Hiryu S.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2014 Sep;200(9):799-809. doi: 10.1007/s00359-014-0921-3. Epub 2014 Jun 24.

PMID:
24958227
10.

Adaptive beam-width control of echolocation sounds by CF-FM bats, Rhinolophus ferrumequinum nippon, during prey-capture flight.

Matsuta N, Hiryu S, Fujioka E, Yamada Y, Riquimaroux H, Watanabe Y.

J Exp Biol. 2013 Apr 1;216(Pt 7):1210-8. doi: 10.1242/jeb.081398.

11.

Behavioral evidence for auditory induction in a species of rodent: Mongolian gerbil (Meriones unguiculatus).

Kobayasi KI, Usami A, Riquimaroux H.

J Acoust Soc Am. 2012 Dec;132(6):4063-8. doi: 10.1121/1.4763546.

PMID:
23231135
12.

Vocalization of echolocation-like pulses for interindividual interaction in horseshoe bats (Rhinolophus ferrumequinum).

Kobayasi KI, Hiryu S, Shimozawa R, Riquimaroux H.

J Acoust Soc Am. 2012 Nov;132(5):EL417-22. doi: 10.1121/1.4757695.

PMID:
23145704
13.

Audiovisual integration in the primary auditory cortex of an awake rodent.

Kobayasi KI, Suwa Y, Riquimaroux H.

Neurosci Lett. 2013 Feb 8;534:24-9. doi: 10.1016/j.neulet.2012.10.056. Epub 2012 Nov 6.

PMID:
23142716
14.

Echolocation behavior of the Japanese horseshoe bat in pursuit of fluttering prey.

Mantani S, Hiryu S, Fujioka E, Matsuta N, Riquimaroux H, Watanabe Y.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2012 Oct;198(10):741-51. Epub 2012 Jul 10.

PMID:
22777677
15.

Convergence of reference frequencies by multiple CF-FM bats (Rhinolophus ferrumequinum nippon) during paired flights evaluated with onboard microphones.

Furusawa Y, Hiryu S, Kobayasi KI, Riquimaroux H.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2012 Sep;198(9):683-93. doi: 10.1007/s00359-012-0739-9. Epub 2012 Jun 21.

PMID:
22717760
16.

Classification of vocalizations in the Mongolian gerbil, Meriones unguiculatus.

Kobayasi KI, Riquimaroux H.

J Acoust Soc Am. 2012 Feb;131(2):1622-31. doi: 10.1121/1.3672693.

PMID:
22352532
17.

Vocalization control in Mongolian gerbils (Meriones unguiculatus) during locomotion behavior.

Nishiyama K, Kobayasi KI, Riquimaroux H.

J Acoust Soc Am. 2011 Dec;130(6):4148-57. doi: 10.1121/1.3651815.

PMID:
22225069
18.

Developmental changes in ultrasonic vocalizations by infant Japanese echolocating bats, Pipistrellus abramus.

Hiryu S, Riquimaroux H.

J Acoust Soc Am. 2011 Oct;130(4):EL147-53. doi: 10.1121/1.3632044.

PMID:
21974484
19.

Echolocation and flight strategy of Japanese house bats during natural foraging, revealed by a microphone array system.

Fujioka E, Mantani S, Hiryu S, Riquimaroux H, Watanabe Y.

J Acoust Soc Am. 2011 Feb;129(2):1081-8. doi: 10.1121/1.3523300.

PMID:
21361464
20.

Frequency tuning and latency organization of responses in the inferior colliculus of Japanese house bat, Pipistrellus abramus.

Goto K, Hiryu S, Riquimaroux H.

J Acoust Soc Am. 2010 Sep;128(3):1452-9. doi: 10.1121/1.3419904.

PMID:
20815479
21.

Novel approach for understanding the neural mechanisms of auditory-motor control: pitch regulation by finger force.

Tachibana RO, Yanagida M, Riquimaroux H.

Neurosci Lett. 2010 Oct 4;482(3):198-202. doi: 10.1016/j.neulet.2010.07.032. Epub 2010 Jul 21.

PMID:
20654698
22.

FM echolocating bats shift frequencies to avoid broadcast-echo ambiguity in clutter.

Hiryu S, Bates ME, Simmons JA, Riquimaroux H.

Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):7048-53. doi: 10.1073/pnas.1000429107. Epub 2010 Mar 29.

23.

Pulse-echo interaction in free-flying horseshoe bats, Rhinolophus ferrumequinum nippon.

Shiori Y, Hiryu S, Watanabe Y, Riquimaroux H, Watanabe Y.

J Acoust Soc Am. 2009 Sep;126(3):EL80-5. doi: 10.1121/1.3186798.

PMID:
19739702
24.

Adaptive echolocation sounds of insectivorous bats, Pipistrellus abramus, during foraging flights in the field.

Hiryu S, Hagino T, Fujioka E, Riquimaroux H, Watanabe Y.

J Acoust Soc Am. 2008 Aug;124(2):EL51-6. doi: 10.1121/1.2947629.

PMID:
18681502
25.

On-board telemetry of emitted sounds from free-flying bats: compensation for velocity and distance stabilizes echo frequency and amplitude.

Hiryu S, Shiori Y, Hosokawa T, Riquimaroux H, Watanabe Y.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Sep;194(9):841-51. doi: 10.1007/s00359-008-0355-x. Epub 2008 Jul 29.

PMID:
18663454
26.

Echo-intensity compensation in echolocating bats (Pipistrellus abramus) during flight measured by a telemetry microphone.

Hiryu S, Hagino T, Riquimaroux H, Watanabe Y.

J Acoust Soc Am. 2007 Mar;121(3):1749-57.

PMID:
17407911
27.

Intra-individual variation in the vocalized frequency of the Taiwanese leaf-nosed bat, Hipposideros terasensis, influenced by conspecific colony members.

Hiryu S, Katsura K, Nagato T, Yamazaki H, Lin LK, Watanabe Y, Riquimaroux H.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006 Aug;192(8):807-15. Epub 2006 Mar 15.

PMID:
16538514
28.

Doppler-shift compensation in the Taiwanese leaf-nosed bat (Hipposideros terasensis) recorded with a telemetry microphone system during flight.

Hiryu S, Katsura K, Lin LK, Riquimaroux H, Watanabe Y.

J Acoust Soc Am. 2005 Dec;118(6):3927-33.

PMID:
16419835
29.
30.
31.
32.

Cortical computational maps control auditory perception.

Riquimaroux H, Gaioni SJ, Suga N.

Science. 1991 Feb 1;251(4993):565-8.

PMID:
1990432
33.

Biosonar behavior of mustached bats swung on a pendulum prior to cortical ablation.

Gaioni SJ, Riquimaroux H, Suga N.

J Neurophysiol. 1990 Dec;64(6):1801-17.

PMID:
2074465

Supplemental Content

Loading ...
Support Center