Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 23

1.

Cholesterol and 27-hydroxycholesterol promote thyroid carcinoma aggressiveness.

Revilla G, Pons MP, Baila-Rueda L, García-León A, Santos D, Cenarro A, Magalhaes M, Blanco RM, Moral A, Ignacio Pérez J, Sabé G, González C, Fuste V, Lerma E, Faria MDS, de Leiva A, Corcoy R, Carles Escolà-Gil J, Mato E.

Sci Rep. 2019 Jul 16;9(1):10260. doi: 10.1038/s41598-019-46727-2.

2.

The Effect of Mesenchymal Stem Cell Wharton's Jelly on ADAMTS-4 and iNOS Levels in Osteoarthritis Rat Model.

Endrinaldi E, Darwin E, Zubir N, Revilla G.

Open Access Maced J Med Sci. 2019 Apr 29;7(8):1270-1275. doi: 10.3889/oamjms.2019.155. eCollection 2019 Apr 30.

3.

Cross-Talk between Inflammatory Mediators and the Epithelial Mesenchymal Transition Process in the Development of Thyroid Carcinoma.

Revilla G, Corcoy R, Moral A, Escolà-Gil JC, Mato E.

Int J Mol Sci. 2019 May 18;20(10). pii: E2466. doi: 10.3390/ijms20102466. Review.

4.

Xyloglucan exoglycosidases in the monocot model Brachypodium distachyon and the conservation of xyloglucan disassembly in angiosperms.

Rubianes D, Valdivia ER, Revilla G, Zarra I, Sampedro J.

Plant Mol Biol. 2019 Jul;100(4-5):495-509. doi: 10.1007/s11103-019-00875-1. Epub 2019 Apr 26.

PMID:
31028613
5.

The Influence of Wharton Jelly Mesenchymal Stem Cell toward Matrix Metalloproteinase-13 and RELA Synoviocyte Gene Expression on Osteoarthritis.

Sofia V, Nasrul E, Manjas M, Revilla G.

Open Access Maced J Med Sci. 2019 Feb 27;7(5):701-706. doi: 10.3889/oamjms.2019.157. eCollection 2019 Mar 15.

6.

Analysis of the Relationship between RELA Gene Expression and MMP-13 Gene Expression in Synoviocyte Cells after Mesenchymal Stem Cell Wharton Jelly.

Sofia V, Nasrul E, Manjas M, Revilla G.

Open Access Maced J Med Sci. 2019 Feb 27;7(4):543-548. doi: 10.3889/oamjms.2019.135. eCollection 2019 Feb 28.

7.

The Effect of Mesenchymal Stem Cell Wharton's Jelly on Matrix Metalloproteinase-1 and Interleukin-4 Levels in Osteoarthritis Rat Model.

Endrinaldi E, Darwin E, Zubir N, Revilla G.

Open Access Maced J Med Sci. 2019 Feb 27;7(4):529-535. doi: 10.3889/oamjms.2019.152. eCollection 2019 Feb 28.

8.

Soluble and Membrane-Bound β-Glucosidases Are Involved in Trimming the Xyloglucan Backbone.

Sampedro J, Valdivia ER, Fraga P, Iglesias N, Revilla G, Zarra I.

Plant Physiol. 2017 Feb;173(2):1017-1030. doi: 10.1104/pp.16.01713. Epub 2016 Dec 12.

9.

Effect of Allogeneic Bone Marrow-mesenchymal Stem Cells (BM-MSCs) to Accelerate Burn Healing of Rat on the Expression of Collagen Type I and Integrin α2β1.

Revilla G, Darwin E, Yanwirasti, Rantam FA.

Pak J Biol Sci. 2016;19(8-9):345-351. doi: 10.3923/pjbs.2016.345.351.

PMID:
29023021
10.

Regulation of secondary wall synthesis and cell death by NAC transcription factors in the monocot Brachypodium distachyon.

Valdivia ER, Herrera MT, Gianzo C, Fidalgo J, Revilla G, Zarra I, Sampedro J.

J Exp Bot. 2013 Mar;64(5):1333-43. doi: 10.1093/jxb/ers394. Epub 2013 Feb 5.

11.

AtBGAL10 is the main xyloglucan β-galactosidase in Arabidopsis, and its absence results in unusual xyloglucan subunits and growth defects.

Sampedro J, Gianzo C, Iglesias N, Guitián E, Revilla G, Zarra I.

Plant Physiol. 2012 Mar;158(3):1146-57. doi: 10.1104/pp.111.192195. Epub 2012 Jan 20.

12.

The overexpression of AtPrx37, an apoplastic peroxidase, reduces growth in Arabidopsis.

Pedreira J, Herrera MT, Zarra I, Revilla G.

Physiol Plant. 2011 Feb;141(2):177-87. doi: 10.1111/j.1399-3054.2010.01427.x. Epub 2010 Dec 7.

PMID:
21044085
13.

Lack of α-xylosidase activity in Arabidopsis alters xyloglucan composition and results in growth defects.

Sampedro J, Pardo B, Gianzo C, Guitián E, Revilla G, Zarra I.

Plant Physiol. 2010 Nov;154(3):1105-15. doi: 10.1104/pp.110.163212. Epub 2010 Aug 26.

14.

Apoplastic glycosidases active against xyloglucan oligosaccharides of Arabidopsis thaliana.

Iglesias N, Abelenda JA, Rodiño M, Sampedro J, Revilla G, Zarra I.

Plant Cell Physiol. 2006 Jan;47(1):55-63. Epub 2005 Nov 2.

PMID:
16267099
15.

Role of apoplastic ascorbate and hydrogen peroxide in the control of cell growth in pine hypocotyls.

Pedreira J, Sanz N, Peña MJ, Sánchez M, Queijeiro E, Revilla G, Zarra I.

Plant Cell Physiol. 2004 May;45(5):530-4.

PMID:
15169934
16.

Changes in alpha-xylosidase during intact and auxin-induced growth of pine hypocotyls.

Sánchez M, Gianzo C, Sampedro J, Revilla G, Zarra I.

Plant Cell Physiol. 2003 Feb;44(2):132-8.

PMID:
12610215
17.

AtFXG1, an Arabidopsis gene encoding alpha-L-fucosidase active against fucosylated xyloglucan oligosaccharides.

de La Torre F, Sampedro J, Zarra I, Revilla G.

Plant Physiol. 2002 Jan;128(1):247-55.

18.

Cloning and expression pattern of a gene encoding an alpha-xylosidase active against xyloglucan oligosaccharides from Arabidopsis.

Sampedro J, Sieiro C, Revilla G, González-Villa T, Zarra I.

Plant Physiol. 2001 Jun;126(2):910-20.

21.

Carbon catabolite repression of penicillin biosynthesis by Penicillium chrysogenum.

Revilla G, López-Nieto MJ, Luengo JM, Martín JF.

J Antibiot (Tokyo). 1984 Jul;37(7):781-9.

22.

Inhibition and repression of homocitrate synthase by lysine in Penicillium chrysogenum.

Luengo JM, Revilla G, López MJ, Villanueva JR, Martín JF.

J Bacteriol. 1980 Dec;144(3):869-76.

23.

Lysine regulation of penicillin biosynthesis in low-producing and industrial strains of Penicillium chrysogenum.

Luengo JM, Revilla G, Villanueva JR, Martín JF.

J Gen Microbiol. 1979 Nov;115(1):207-11.

PMID:
119032

Supplemental Content

Loading ...
Support Center