Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 44

1.

Reciprocal Prioritization to Dietary Glycans by Gut Bacteria in a Competitive Environment Promotes Stable Coexistence.

Tuncil YE, Xiao Y, Porter NT, Reuhs BL, Martens EC, Hamaker BR.

MBio. 2017 Oct 10;8(5). pii: e01068-17. doi: 10.1128/mBio.01068-17.

2.

Elevated propionate and butyrate in fecal ferments of hydrolysates generated by oxalic acid treatment of corn bran arabinoxylan.

Rumpagaporn P, Reuhs BL, Cantu-Jungles TM, Kaur A, Patterson JA, Keshavarzian A, Hamaker BR.

Food Funct. 2016 Dec 7;7(12):4935-4943.

PMID:
27841429
3.

Analysis of octenylsuccinate rice and tapioca starches: Distribution of octenylsuccinic anhydride groups in starch granules.

Whitney K, Reuhs BL, Ovando Martinez M, Simsek S.

Food Chem. 2016 Nov 15;211:608-15. doi: 10.1016/j.foodchem.2016.05.096. Epub 2016 May 14.

PMID:
27283674
4.

Influence of PEGylation on the ability of carboxymethyl-dextran to form complexes with α-lactalbumin.

Du J, Reuhs BL, Jones OG.

Food Chem. 2016 Apr 1;196:853-9. doi: 10.1016/j.foodchem.2015.10.021. Epub 2015 Oct 8.

PMID:
26593565
5.

Structural features of soluble cereal arabinoxylan fibers associated with a slow rate of in vitro fermentation by human fecal microbiota.

Rumpagaporn P, Reuhs BL, Kaur A, Patterson JA, Keshavarzian A, Hamaker BR.

Carbohydr Polym. 2015 Oct 5;130:191-7. doi: 10.1016/j.carbpol.2015.04.041. Epub 2015 May 4.

PMID:
26076616
6.

Synthesis and quantitative analysis of plasma-targeted metabolites of catechin and epicatechin.

Blount JW, Redan BW, Ferruzzi MG, Reuhs BL, Cooper BR, Harwood JS, Shulaev V, Pasinetti G, Dixon RA.

J Agric Food Chem. 2015 Mar 4;63(8):2233-40. doi: 10.1021/jf505922b. Epub 2015 Feb 20.

PMID:
25671729
7.

Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.) provide dietary fibres high in pectic substances and xyloglucans.

Lamothe LM, Srichuwong S, Reuhs BL, Hamaker BR.

Food Chem. 2015 Jan 15;167:490-6. doi: 10.1016/j.foodchem.2014.07.022. Epub 2014 Jul 11.

PMID:
25149016
8.

Enzyme-synthesized highly branched maltodextrins have slow glucose generation at the mucosal α-glucosidase level and are slowly digestible in vivo.

Lee BH, Yan L, Phillips RJ, Reuhs BL, Jones K, Rose DR, Nichols BL, Quezada-Calvillo R, Yoo SH, Hamaker BR.

PLoS One. 2013;8(4):e59745. doi: 10.1371/journal.pone.0059745. Epub 2013 Apr 2.

9.

Structural analysis of succinoglycan oligosaccharides from Sinorhizobium meliloti strains with different host compatibility phenotypes.

Simsek S, Wood K, Reuhs BL.

J Bacteriol. 2013 May;195(9):2032-8. doi: 10.1128/JB.00009-13. Epub 2013 Mar 1.

10.

A novel human antimicrobial factor targets Pseudomonas aeruginosa through its type III secretion system.

Mahmood F, Hakimiyan A, Jayaraman V, Wood S, Sivaramakrishnan G, Rehman T, Reuhs BL, Chubinskaya S, Shafikhani SH.

J Med Microbiol. 2013 Apr;62(Pt 4):531-9. doi: 10.1099/jmm.0.051227-0. Epub 2013 Jan 3.

PMID:
23288430
11.

Differentiation of live, dead and treated cells of Escherichia coli O157:H7 using FT-IR spectroscopy.

Davis R, Deering A, Burgula Y, Mauer LJ, Reuhs BL.

J Appl Microbiol. 2012 Apr;112(4):743-51. doi: 10.1111/j.1365-2672.2011.05215.x. Epub 2012 Feb 28.

12.

Identification of the cellular location of internalized Escherichia coli O157:H7 in mung bean, Vigna radiata, by immunocytochemical techniques.

Deering AJ, Pruitt RE, Mauer LJ, Reuhs BL.

J Food Prot. 2011 Aug;74(8):1224-30. doi: 10.4315/0362-028X.JFP-11-015.

PMID:
21819647
13.

Detection and differentiation of live and heat-treated Salmonella enterica serovars inoculated onto chicken breast using Fourier transform infrared (FT-IR) spectroscopy.

Davis R, Burgula Y, Deering A, Irudayaraj J, Reuhs BL, Mauer LJ.

J Appl Microbiol. 2010 Dec;109(6):2019-31. doi: 10.1111/j.1365-2672.2010.04832.x.

14.

Detection of E. coli O157:H7 from ground beef using Fourier transform infrared (FT-IR) spectroscopy and chemometrics.

Davis R, Irudayaraj J, Reuhs BL, Mauer LJ.

J Food Sci. 2010 Aug 1;75(6):M340-6. doi: 10.1111/j.1750-3841.2010.01686.x.

PMID:
20722934
15.

An apigenin-induced decrease in K-antigen production by Sinorhizobium sp. NGR234 is y4gM- and nodD1-dependent.

Simsek S, Ojanen-Reuhs T, Marie C, Reuhs BL.

Carbohydr Res. 2009 Oct 12;344(15):1947-50. doi: 10.1016/j.carres.2009.07.006. Epub 2009 Jul 19.

PMID:
19679303
16.

Sequence analysis of Escherichia coli O157:H7 bacteriophage PhiV10 and identification of a phage-encoded immunity protein that modifies the O157 antigen.

Perry LL, SanMiguel P, Minocha U, Terekhov AI, Shroyer ML, Farris LA, Bright N, Reuhs BL, Applegate BM.

FEMS Microbiol Lett. 2009 Mar;292(2):182-6. doi: 10.1111/j.1574-6968.2009.01511.x. Epub 2009 Feb 5.

17.

Glucose release of water-soluble starch-related alpha-glucans by pancreatin and amyloglucosidase is affected by the abundance of alpha-1,6-glucosidic linkages.

Shin JE, Simsek S, Reuhs BL, Yao Y.

J Agric Food Chem. 2008 Nov 26;56(22):10879-86. doi: 10.1021/jf801073u.

PMID:
18975962
18.

Strain-ecotype specificity in Sinorhizobium meliloti-Medicago truncatula symbiosis is correlated to succinoglycan oligosaccharide structure.

Simsek S, Ojanen-Reuhs T, Stephens SB, Reuhs BL.

J Bacteriol. 2007 Nov;189(21):7733-40. Epub 2007 Aug 31.

19.

Starch with a slow digestion property produced by altering its chain length, branch density, and crystalline structure.

Ao Z, Simsek S, Zhang G, Venkatachalam M, Reuhs BL, Hamaker BR.

J Agric Food Chem. 2007 May 30;55(11):4540-7. Epub 2007 May 8.

PMID:
17488022
20.

Detection of Escherichia coli O157:H7 and Salmonella typhimurium using filtration followed by Fourier-transform infrared spectroscopy.

Burgula Y, Khali D, Kim S, Krishnan SS, Cousin MA, Gore JP, Reuhs BL, Mauer LJ.

J Food Prot. 2006 Aug;69(8):1777-84.

PMID:
16924899
21.

Addition of glycerol for improved methylation linkage analysis of polysaccharides.

Kim JS, Reuhs BL, Michon F, Kaiser RE, Arumugham RG.

Carbohydr Res. 2006 Jun 12;341(8):1061-4. Epub 2006 Apr 3.

PMID:
16580651
22.
23.

Glass-fiber disks provide suitable medium to study polyol production and gene expression in Eurotium rubrum.

Cooley C, Bluhm BH, Reuhs BL, Woloshuk CP.

Mycologia. 2005 Jul-Aug;97(4):743-50.

PMID:
16457343
24.

Structural characterization of a flavonoid-inducible Pseudomonas aeruginosa A-band-like O antigen of Rhizobium sp. strain NGR234, required for the formation of nitrogen-fixing nodules.

Reuhs BL, Relić B, Forsberg LS, Marie C, Ojanen-Reuhs T, Stephens SB, Wong CH, Jabbouri S, Broughton WJ.

J Bacteriol. 2005 Sep;187(18):6479-87.

26.

l-Galactose replaces l-fucose in the pectic polysaccharide rhamnogalacturonan II synthesized by the l-fucose-deficient mur1 Arabidopsis mutant.

Reuhs BL, Glenn J, Stephens SB, Kim JS, Christie DB, Glushka JG, Zablackis E, Albersheim P, Darvill AG, O'Neill MA.

Planta. 2004 May;219(1):147-57. Epub 2004 Feb 26.

PMID:
14991405
27.

Chronic intracellular infection of alfalfa nodules by Sinorhizobium meliloti requires correct lipopolysaccharide core.

Campbell GR, Reuhs BL, Walker GC.

Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3938-43.

28.

Structure and carbohydrate analysis of the exopolysaccharide capsule of Pseudomonas putida G7.

Kachlany SC, Levery SB, Kim JS, Reuhs BL, Lion LW, Ghiorse WC.

Environ Microbiol. 2001 Dec;3(12):774-84.

PMID:
11846771
29.

The rkp-3 gene region of Sinorhizobium meliloti Rm41 contains strain-specific genes that determine K antigen structure.

Kiss E, Kereszt A, Barta F, Stephens S, Reuhs BL, Kondorosi A, Putnoky P.

Mol Plant Microbe Interact. 2001 Dec;14(12):1395-403.

31.

Epitope identification for a panel of anti-Sinorhizobium meliloti monoclonal antibodies and application to the analysis of K antigens and lipopolysaccharides from bacteroids.

Reuhs BL, Stephens SB, Geller DP, Kim JS, Glenn J, Przytycki J, Ojanen-Reuhs T.

Appl Environ Microbiol. 1999 Nov;65(11):5186-91.

33.

Development and application of pathovar-specific monoclonal antibodies that recognize the lipopolysaccharide O antigen and the type IV fimbriae of Xanthomonas hyacinthi.

van Doorn J, Ojanen-Reuhs T, Hollinger TC, Reuhs BL, Schots A, Boonekamp PM, Oudega B.

Appl Environ Microbiol. 1999 Sep;65(9):4171-80.

34.

Sinorhizobium fredii and Sinorhizobium meliloti produce structurally conserved lipopolysaccharides and strain-specific K antigens.

Reuhs BL, Geller DP, Kim JS, Fox JE, Kolli VS, Pueppke SG.

Appl Environ Microbiol. 1998 Dec;64(12):4930-8.

35.
39.

The rkpGHI and -J genes are involved in capsular polysaccharide production by Rhizobium meliloti.

Kiss E, Reuhs BL, Kim JS, Kereszt A, Petrovics G, Putnoky P, Dusha I, Carlson RW, Kondorosi A.

J Bacteriol. 1997 Apr;179(7):2132-40.

40.

Low molecular weight EPS II of Rhizobium meliloti allows nodule invasion in Medicago sativa.

González JE, Reuhs BL, Walker GC.

Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8636-41.

41.

Separation of bacterial capsular and lipopolysaccharides by preparative electrophoresis.

Kim JS, Reuhs BL, Rahman MM, Ridley B, Carlson RW.

Glycobiology. 1996 Jun;6(4):433-7.

PMID:
8842707
42.
43.

Production of cell-associated polysaccharides of Rhizobium fredii USDA205 is modulated by apigenin and host root extract.

Reuhs BL, Kim JS, Badgett A, Carlson RW.

Mol Plant Microbe Interact. 1994 Mar-Apr;7(2):240-7.

PMID:
8012042

Supplemental Content

Loading ...
Support Center