Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 35

1.
2.

EGFR signaling pathways are wired differently in normal 184A1L5 human mammary epithelial and MDA-MB-231 breast cancer cells.

Speth Z, Islam T, Banerjee K, Resat H.

J Cell Commun Signal. 2017 Dec;11(4):341-356. doi: 10.1007/s12079-017-0389-3. Epub 2017 Mar 29.

3.

Constitutive activation of STAT3 in breast cancer cells: A review.

Banerjee K, Resat H.

Int J Cancer. 2016 Jun 1;138(11):2570-8. doi: 10.1002/ijc.29923. Epub 2015 Nov 28. Review.

4.

Reconstruction of biofilm images: combining local and global structural parameters.

Resat H, Renslow RS, Beyenal H.

Biofouling. 2014 Oct;30(9):1141-54. doi: 10.1080/08927014.2014.969721.

PMID:
25377487
5.

Integrated analysis reveals that STAT3 is central to the crosstalk between HER/ErbB receptor signaling pathways in human mammary epithelial cells.

Gong C, Zhang Y, Shankaran H, Resat H.

Mol Biosyst. 2015 Jan;11(1):146-58. doi: 10.1039/c4mb00471j. Epub 2014 Oct 15.

6.

Model-based analysis of HER activation in cells co-expressing EGFR, HER2 and HER3.

Shankaran H, Zhang Y, Tan Y, Resat H.

PLoS Comput Biol. 2013;9(8):e1003201. doi: 10.1371/journal.pcbi.1003201. Epub 2013 Aug 22.

7.

Integrated experimental and model-based analysis reveals the spatial aspects of EGFR activation dynamics.

Shankaran H, Zhang Y, Chrisler WB, Ewald JA, Wiley HS, Resat H.

Mol Biosyst. 2012 Nov;8(11):2868-82. doi: 10.1039/c2mb25190f. Epub 2012 Sep 5.

8.

An adaptive coarse graining method for signal transduction in three dimensions.

Archuleta MN, McDermott JE, Edwards JS, Resat H.

Fundam Inform. 2012;118(4). doi: 10.3233/FI-2012-720.

9.

Modeling microbial dynamics in heterogeneous environments: growth on soil carbon sources.

Resat H, Bailey V, McCue LA, Konopka A.

Microb Ecol. 2012 May;63(4):883-97. doi: 10.1007/s00248-011-9965-x. Epub 2011 Dec 23.

PMID:
22193925
10.

Spatial aspects in biological system simulations.

Resat H, Costa MN, Shankaran H.

Methods Enzymol. 2011;487:485-511. doi: 10.1016/B978-0-12-381270-4.00017-2.

11.

Rapid and sustained nuclear-cytoplasmic ERK oscillations induced by epidermal growth factor.

Shankaran H, Ippolito DL, Chrisler WB, Resat H, Bollinger N, Opresko LK, Wiley HS.

Mol Syst Biol. 2009;5:332. doi: 10.1038/msb.2009.90. Epub 2009 Dec 1.

12.

HER/ErbB receptor interactions and signaling patterns in human mammary epithelial cells.

Zhang Y, Opresko L, Shankaran H, Chrisler WB, Wiley HS, Resat H.

BMC Cell Biol. 2009 Oct 31;10:78. doi: 10.1186/1471-2121-10-78.

13.

Kinetic modeling of biological systems.

Resat H, Petzold L, Pettigrew MF.

Methods Mol Biol. 2009;541:311-35. doi: 10.1007/978-1-59745-243-4_14. Review.

14.

System theoretical investigation of human epidermal growth factor receptor-mediated signalling.

Zhang Y, Shankaran H, Opresko L, Resat H.

IET Syst Biol. 2008 Sep;2(5):273-84. doi: 10.1049/iet-syb:20080116.

15.

Quantifying the effects of co-expressing EGFR and HER2 on HER activation and trafficking.

Shankaran H, Zhang Y, Opresko L, Resat H.

Biochem Biophys Res Commun. 2008 Jun 27;371(2):220-4. doi: 10.1016/j.bbrc.2008.04.043. Epub 2008 Apr 18.

16.
17.

A domain-based approach to predict protein-protein interactions.

Singhal M, Resat H.

BMC Bioinformatics. 2007 Jun 13;8:199.

18.

Cell surface receptors for signal transduction and ligand transport: a design principles study.

Shankaran H, Resat H, Wiley HS.

PLoS Comput Biol. 2007 Jun;3(6):e101. Epub 2007 Apr 20. Review.

19.

Multinomial tau-leaping method for stochastic kinetic simulations.

Pettigrew MF, Resat H.

J Chem Phys. 2007 Feb 28;126(8):084101.

PMID:
17343434
20.

Modeling the effects of HER/ErbB1-3 coexpression on receptor dimerization and biological response.

Shankaran H, Wiley HS, Resat H.

Biophys J. 2006 Jun 1;90(11):3993-4009. Epub 2006 Mar 13.

21.

Modeling signal transduction networks: a comparison of two stochastic kinetic simulation algorithms.

Pettigrew MF, Resat H.

J Chem Phys. 2005 Sep 15;123(11):114707.

PMID:
16392583
22.

Combining microarray and genomic data to predict DNA binding motifs.

Mao L, Mackenzie C, Roh JH, Eraso JM, Kaplan S, Resat H.

Microbiology. 2005 Oct;151(Pt 10):3197-213.

PMID:
16207904
23.

A model of cytokine shedding induced by low doses of gamma radiation.

Miller JH, Zheng F, Jin S, Opresko LK, Wiley HS, Resat H.

Radiat Res. 2005 Mar;163(3):337-42.

PMID:
15733041
24.

Probabilistic representation of gene regulatory networks.

Mao L, Resat H.

Bioinformatics. 2004 Sep 22;20(14):2258-69. Epub 2004 Apr 8.

PMID:
15073019
25.

An integrated model of epidermal growth factor receptor trafficking and signal transduction.

Resat H, Ewald JA, Dixon DA, Wiley HS.

Biophys J. 2003 Aug;85(2):730-43.

26.

Comparative molecular dynamics simulations of amphotericin B-cholesterol/ergosterol membrane channels.

Baginski M, Resat H, Borowski E.

Biochim Biophys Acta. 2002 Dec 23;1567(1-2):63-78.

27.

Ion passage pathways and thermodynamics of the amphotericin B membrane channel.

Resat H, Baginski M.

Eur Biophys J. 2002 Jul;31(4):294-305. Epub 2002 Apr 13.

PMID:
12122476
28.

The arginine finger of RasGAP helps Gln-61 align the nucleophilic water in GAP-stimulated hydrolysis of GTP.

Resat H, Straatsma TP, Dixon DA, Miller JH.

Proc Natl Acad Sci U S A. 2001 May 22;98(11):6033-8.

29.

Calculating the local solvent chemical potential in crystal hydrates.

Resat H, Mezei M.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Nov;62(5 Pt B):7077-81.

PMID:
11102064
30.

Conformational properties of amphotericin B amide derivatives--impact on selective toxicity.

Resat H, Sungur FA, Baginski M, Borowski E, Aviyente V.

J Comput Aided Mol Des. 2000 Oct;14(7):689-703.

PMID:
11008890
31.
32.

Molecular properties of amphotericin B membrane channel: a molecular dynamics simulation.

Baginski M, Resat H, McCammon JA.

Mol Pharmacol. 1997 Oct;52(4):560-70.

33.

Enzyme-inhibitor association thermodynamics: explicit and continuum solvent studies.

Resat H, Marrone TJ, McCammon JA.

Biophys J. 1997 Feb;72(2 Pt 1):522-32.

34.

The sensitivity of conformational free energies of the alanine dipeptide to atomic site charges.

Resat H, Maye PV, Mezei M.

Biopolymers. 1997 Jan;41(1):73-81.

PMID:
8986120
35.

Supplemental Content

Support Center