Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 13

1.

Site-Specific Recombination at XerC/D Sites Mediates the Formation and Resolution of Plasmid Co-integrates Carrying a blaOXA-58- and TnaphA6-Resistance Module in Acinetobacter baumannii.

Cameranesi MM, Morán-Barrio J, Limansky AS, Repizo GD, Viale AM.

Front Microbiol. 2018 Jan 26;9:66. doi: 10.3389/fmicb.2018.00066. eCollection 2018.

2.

The Environmental Acinetobacter baumannii Isolate DSM30011 Reveals Clues into the Preantibiotic Era Genome Diversity, Virulence Potential, and Niche Range of a Predominant Nosocomial Pathogen.

Repizo GD, Viale AM, Borges V, Cameranesi MM, Taib N, Espariz M, Brochier-Armanet C, Gomes JP, Salcedo SP.

Genome Biol Evol. 2017 Sep 1;9(9):2292-2307. doi: 10.1093/gbe/evx162.

3.

Prevalence of Acinetobacter baumannii strains expressing the Type 6 secretion system in patients with bacteremia.

Repizo GD.

Virulence. 2017 Oct 3;8(7):1099-1101. doi: 10.1080/21505594.2017.1346768. Epub 2017 Jun 26. No abstract available.

4.

Enterococcus faecalis Uses a Phosphotransferase System Permease and a Host Colonization-Related ABC Transporter for Maltodextrin Uptake.

Sauvageot N, Mokhtari A, Joyet P, Budin-Verneuil A, Blancato VS, Repizo GD, Henry C, Pikis A, Thompson J, Magni C, Hartke A, Deutscher J.

J Bacteriol. 2017 Apr 11;199(9). pii: e00878-16. doi: 10.1128/JB.00878-16. Print 2017 May 1.

5.

Differential Role of the T6SS in Acinetobacter baumannii Virulence.

Repizo GD, Gagné S, Foucault-Grunenwald ML, Borges V, Charpentier X, Limansky AS, Gomes JP, Viale AM, Salcedo SP.

PLoS One. 2015 Sep 24;10(9):e0138265. doi: 10.1371/journal.pone.0138265. eCollection 2015.

6.

α-Acetolactate synthase of Lactococcus lactis contributes to pH homeostasis in acid stress conditions.

Zuljan FA, Repizo GD, Alarcon SH, Magni C.

Int J Food Microbiol. 2014 Oct 1;188:99-107. doi: 10.1016/j.ijfoodmicro.2014.07.017. Epub 2014 Jul 27.

PMID:
25100661
7.

Genomic comparative analysis of the environmental Enterococcus mundtii against enterococcal representative species.

Repizo GD, Espariz M, Blancato VS, Suárez CA, Esteban L, Magni C.

BMC Genomics. 2014 Jun 18;15:489. doi: 10.1186/1471-2164-15-489.

8.

Enterococcus faecalis utilizes maltose by connecting two incompatible metabolic routes via a novel maltose 6'-phosphate phosphatase (MapP).

Mokhtari A, Blancato VS, Repizo GD, Henry C, Pikis A, Bourand A, de Fátima Álvarez M, Immel S, Mechakra-Maza A, Hartke A, Thompson J, Magni C, Deutscher J.

Mol Microbiol. 2013 Apr;88(2):234-53. doi: 10.1111/mmi.12183. Epub 2013 Mar 14.

9.

Biochemical and genetic characterization of the Enterococcus faecalis oxaloacetate decarboxylase complex.

Repizo GD, Blancato VS, Mortera P, Lolkema JS, Magni C.

Appl Environ Microbiol. 2013 May;79(9):2882-90. doi: 10.1128/AEM.03980-12. Epub 2013 Feb 22.

10.

Draft genome sequence of Enterococcus mundtii CRL1656.

Magni C, Espeche C, Repizo GD, Saavedra L, Suárez CA, Blancato VS, Espariz M, Esteban L, Raya RR, Font de Valdez G, Vignolo G, Mozzi F, Taranto MP, Hebert EM, Nader-Macías ME, Sesma F.

J Bacteriol. 2012 Jan;194(2):550. doi: 10.1128/JB.06415-11.

11.

Disruption of the alsSD operon of Enterococcus faecalis impairs growth on pyruvate at low pH.

Repizo GD, Mortera P, Magni C.

Microbiology. 2011 Sep;157(Pt 9):2708-19. doi: 10.1099/mic.0.047662-0. Epub 2011 Jun 30.

PMID:
21719538
12.

Transcriptional regulation of the citrate gene cluster of Enterococcus faecalis Involves the GntR family transcriptional activator CitO.

Blancato VS, Repizo GD, Suárez CA, Magni C.

J Bacteriol. 2008 Nov;190(22):7419-30. doi: 10.1128/JB.01704-07. Epub 2008 Sep 19.

13.

Catabolite repression of the citST two-component system in Bacillus subtilis.

Repizo GD, Blancato VS, Sender PD, Lolkema J, Magni C.

FEMS Microbiol Lett. 2006 Jul;260(2):224-31.

Supplemental Content

Loading ...
Support Center