Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 16

1.

Deep brain stimulation for early-stage Parkinson's disease: an illustrative case.

Gill CE, Allen LA, Konrad PE, Davis TL, Bliton MJ, Finder SG, Tramontana MG, Kao CC, Remple MS, Bradenham CH, Charles PD.

Neuromodulation. 2011 Nov-Dec;14(6):515-21; discussion 521-2. doi: 10.1111/j.1525-1403.2011.00391.x. Epub 2011 Sep 21.

2.

Subthalamic nucleus neuronal firing rate increases with Parkinson's disease progression.

Remple MS, Bradenham CH, Kao CC, Charles PD, Neimat JS, Konrad PE.

Mov Disord. 2011 Aug 1;26(9):1657-62. doi: 10.1002/mds.23708. Epub 2011 May 3.

3.

Customized, miniature rapid-prototype stereotactic frames for use in deep brain stimulator surgery: initial clinical methodology and experience from 263 patients from 2002 to 2008.

Konrad PE, Neimat JS, Yu H, Kao CC, Remple MS, D'Haese PF, Dawant BM.

Stereotact Funct Neurosurg. 2011;89(1):34-41. doi: 10.1159/000322276. Epub 2010 Dec 15.

4.

CranialVault and its CRAVE tools: a clinical computer assistance system for deep brain stimulation (DBS) therapy.

D'Haese PF, Pallavaram S, Li R, Remple MS, Kao C, Neimat JS, Konrad PE, Dawant BM.

Med Image Anal. 2012 Apr;16(3):744-53. doi: 10.1016/j.media.2010.07.009. Epub 2010 Aug 1.

5.

Effect of brain shift on the creation of functional atlases for deep brain stimulation surgery.

Pallavaram S, Dawant BM, Remple MS, Neimat JS, Kao C, Konrad PE, D'Haese PF.

Int J Comput Assist Radiol Surg. 2010 May;5(3):221-8. doi: 10.1007/s11548-009-0391-1. Epub 2009 Aug 2.

6.

A method to correct for brain shift when building electrophysiological atlases for deep brain stimulation (DBS) surgery.

Pallavaram S, Dawant BM, Li R, Neimat JS, Remple MS, Kao C, Konrad PE, D'Haese PF.

Med Image Comput Comput Assist Interv. 2009;12(Pt 1):557-64.

7.

Frontiers in the surgical treatment of Parkinson's disease.

Remple MS, Sarpong Y, Neimat JS.

Expert Rev Neurother. 2008 Jun;8(6):897-906. doi: 10.1586/14737175.8.6.897. Review.

PMID:
18505355
8.
9.

Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord.

Adkins DL, Boychuk J, Remple MS, Kleim JA.

J Appl Physiol (1985). 2006 Dec;101(6):1776-82. Epub 2006 Sep 7. Review.

10.
11.

Organization of somatosensory cortical areas in the naked mole-rat (Heterocephalus glaber).

Henry EC, Remple MS, O'Riain MJ, Catania KC.

J Comp Neurol. 2006 Apr 1;495(4):434-52.

PMID:
16485289
12.

Bilateral effects of spinal overhemisections on the development of the somatosensory system in rats.

Remple MS, Jain N, Diener PS, Kaas JH.

J Comp Neurol. 2004 Aug 2;475(4):604-19.

PMID:
15236240
14.

Somatosensory cortex dominated by the representation of teeth in the naked mole-rat brain.

Catania KC, Remple MS.

Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5692-7. Epub 2002 Apr 9.

15.

Motor learning-dependent synaptogenesis is localized to functionally reorganized motor cortex.

Kleim JA, Barbay S, Cooper NR, Hogg TM, Reidel CN, Remple MS, Nudo RJ.

Neurobiol Learn Mem. 2002 Jan;77(1):63-77.

PMID:
11749086
16.

Sensitivity of cortical movement representations to motor experience: evidence that skill learning but not strength training induces cortical reorganization.

Remple MS, Bruneau RM, VandenBerg PM, Goertzen C, Kleim JA.

Behav Brain Res. 2001 Sep 14;123(2):133-41.

PMID:
11399326

Supplemental Content

Loading ...
Support Center