Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 60

1.

Endometrial Carcinomas with POLE Exonuclease Domain Mutations Have a Favorable Prognosis.

McConechy MK, Talhouk A, Leung S, Chiu D, Yang W, Senz J, Reha-Krantz LJ, Lee CH, Huntsman DG, Gilks CB, McAlpine JN.

Clin Cancer Res. 2016 Jun 15;22(12):2865-73. doi: 10.1158/1078-0432.CCR-15-2233. Epub 2016 Jan 13.

2.

DNA polymerase 3'→5' exonuclease activity: Different roles of the beta hairpin structure in family-B DNA polymerases.

Darmawan H, Harrison M, Reha-Krantz LJ.

DNA Repair (Amst). 2015 May;29:36-46. doi: 10.1016/j.dnarep.2015.02.014. Epub 2015 Feb 23.

PMID:
25753811
3.

Engineering processive DNA polymerases with maximum benefit at minimum cost.

Reha-Krantz LJ, Woodgate S, Goodman MF.

Front Microbiol. 2014 Aug 4;5:380. doi: 10.3389/fmicb.2014.00380. eCollection 2014.

4.

Targeted mutagenesis of a specific gene in yeast.

Zhang L, Radziwon A, Reha-Krantz LJ.

Methods Mol Biol. 2014;1163:109-29. doi: 10.1007/978-1-4939-0799-1_8.

PMID:
24841302
5.

Escherichia coli XL10-gold bacteria produce bacteriophage.

Kamal F, Zhang L, Reha-Krantz LJ.

J Clin Microbiol. 2013 Feb;51(2):727. doi: 10.1128/JCM.03104-12. Epub 2012 Dec 5. No abstract available.

6.

Structure of the 2-aminopurine-cytosine base pair formed in the polymerase active site of the RB69 Y567A-DNA polymerase.

Reha-Krantz LJ, Hariharan C, Subuddhi U, Xia S, Zhao C, Beckman J, Christian T, Konigsberg W.

Biochemistry. 2011 Nov 22;50(46):10136-49. doi: 10.1021/bi2014618. Epub 2011 Oct 28.

7.

Drug-sensitive DNA polymerase δ reveals a role for mismatch repair in checkpoint activation in yeast.

Reha-Krantz LJ, Siddique MS, Murphy K, Tam A, O'Carroll M, Lou S, Schultz A, Boone C.

Genetics. 2011 Dec;189(4):1211-24. doi: 10.1534/genetics.111.131938. Epub 2011 Sep 16.

8.

Identification of a new motif in family B DNA polymerases by mutational analyses of the bacteriophage t4 DNA polymerase.

Li V, Hogg M, Reha-Krantz LJ.

J Mol Biol. 2010 Jul 16;400(3):295-308. doi: 10.1016/j.jmb.2010.05.030. Epub 2010 May 21.

9.

The use of 2-aminopurine fluorescence to study DNA polymerase function.

Reha-Krantz LJ.

Methods Mol Biol. 2009;521:381-96. doi: 10.1007/978-1-60327-815-7_21.

PMID:
19563118
10.

DNA polymerase proofreading: Multiple roles maintain genome stability.

Reha-Krantz LJ.

Biochim Biophys Acta. 2010 May;1804(5):1049-63. doi: 10.1016/j.bbapap.2009.06.012. Epub 2009 Jun 21. Review.

PMID:
19545649
11.

Recent patents of gene sequences relative to DNA polymerases.

Reha-Krantz LJ.

Recent Pat DNA Gene Seq. 2008;2(3):145-63. Review.

PMID:
19075953
12.

Use of 2-aminopurine fluorescence to study the role of the beta hairpin in the proofreading pathway catalyzed by the phage T4 and RB69 DNA polymerases.

Subuddhi U, Hogg M, Reha-Krantz LJ.

Biochemistry. 2008 Jun 10;47(23):6130-7. doi: 10.1021/bi800211f. Epub 2008 May 16.

13.

DNA polymerase proofreading: active site switching catalyzed by the bacteriophage T4 DNA polymerase.

Fidalgo da Silva E, Reha-Krantz LJ.

Nucleic Acids Res. 2007;35(16):5452-63. Epub 2007 Aug 15.

14.
15.

A method to select for mutator DNA polymerase deltas in Saccharomyces cerevisiae.

Murphy K, Darmawan H, Schultz A, Fidalgo da Silva E, Reha-Krantz LJ.

Genome. 2006 Apr;49(4):403-10.

PMID:
16699561
16.

Dynamics of nucleotide incorporation: snapshots revealed by 2-aminopurine fluorescence studies.

Hariharan C, Bloom LB, Helquist SA, Kool ET, Reha-Krantz LJ.

Biochemistry. 2006 Mar 7;45(9):2836-44.

18.

Multiplexed DNA sequencing-by-synthesis.

Aksyonov SA, Bittner M, Bloom LB, Reha-Krantz LJ, Gould IR, Hayes MA, Kiernan UA, Niederkofler EE, Pizziconi V, Rivera RS, Williams DJ, Williams P.

Anal Biochem. 2006 Jan 1;348(1):127-38. Epub 2005 Oct 21.

PMID:
16289447
19.

Sensitivity to phosphonoacetic acid: a new phenotype to probe DNA polymerase delta in Saccharomyces cerevisiae.

Li L, Murphy KM, Kanevets U, Reha-Krantz LJ.

Genetics. 2005 Jun;170(2):569-80. Epub 2005 Mar 31.

20.
21.

Using 2-aminopurine fluorescence to measure incorporation of incorrect nucleotides by wild type and mutant bacteriophage T4 DNA polymerases.

Fidalgo da Silva E, Mandal SS, Reha-Krantz LJ.

J Biol Chem. 2002 Oct 25;277(43):40640-9. Epub 2002 Aug 19.

22.
23.
24.

Dinucleotide repeat expansion catalyzed by bacteriophage T4 DNA polymerase in vitro.

da Silva EF, Reha-Krantz LJ.

J Biol Chem. 2000 Oct 6;275(40):31528-35.

25.
26.

Mutational and pH studies of the 3' --> 5' exonuclease activity of bacteriophage T4 DNA polymerase.

Elisseeva E, Mandal SS, Reha-Krantz LJ.

J Biol Chem. 1999 Aug 27;274(35):25151-8.

27.

In vitro selection of sequence contexts which enhance bypass of abasic sites and tetrahydrofuran by T4 DNA polymerase holoenzyme.

Hatahet Z, Zhou M, Reha-Krantz LJ, Ide H, Morrical SW, Wallace SS.

J Mol Biol. 1999 Mar 5;286(4):1045-57.

PMID:
10047481
28.

The proofreading pathway of bacteriophage T4 DNA polymerase.

Reha-Krantz LJ, Marquez LA, Elisseeva E, Baker RP, Bloom LB, Dunford HB, Goodman MF.

J Biol Chem. 1998 Sep 4;273(36):22969-76.

29.

In search of a mutational hotspot.

Hatahet Z, Zhou M, Reha-Krantz LJ, Morrical SW, Wallace SS.

Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8556-61.

30.

Exonuclease-polymerase active site partitioning of primer-template DNA strands and equilibrium Mg2+ binding properties of bacteriophage T4 DNA polymerase.

Beechem JM, Otto MR, Bloom LB, Eritja R, Reha-Krantz LJ, Goodman MF.

Biochemistry. 1998 Jul 14;37(28):10144-55.

PMID:
9665720
31.
32.
34.

Replication of O6-methylguanine-containing DNA by repair and replicative DNA polymerases.

Reha-Krantz LJ, Nonay RL, Day RS, Wilson SH.

J Biol Chem. 1996 Aug 16;271(33):20088-95.

37.

Learning about DNA polymerase function by studying antimutator DNA polymerases.

Reha-Krantz LJ.

Trends Biochem Sci. 1995 Apr;20(4):136-40. Review.

PMID:
7770910
38.
39.

Pre-steady-state kinetic analysis of sequence-dependent nucleotide excision by the 3'-exonuclease activity of bacteriophage T4 DNA polymerase.

Bloom LB, Otto MR, Eritja R, Reha-Krantz LJ, Goodman MF, Beechem JM.

Biochemistry. 1994 Jun 21;33(24):7576-86.

PMID:
8011623
41.

Analysis of inhibitors of bacteriophage T4 DNA polymerase.

Khan NN, Reha-Krantz LJ, Wright GE.

Nucleic Acids Res. 1994 Jan 25;22(2):232-7.

42.
43.
44.

Are there highly conserved DNA polymerase 3'----5' exonuclease motifs?

Reha-Krantz LJ.

Gene. 1992 Mar 1;112(1):133-7.

PMID:
1551593
45.

DNA polymerization in the absence of exonucleolytic proofreading: in vivo and in vitro studies.

Reha-Krantz LJ, Stocki S, Nonay RL, Dimayuga E, Goodrich LD, Konigsberg WH, Spicer EK.

Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2417-21.

48.
49.

Primary structure of T4 DNA polymerase. Evolutionary relatedness to eucaryotic and other procaryotic DNA polymerases.

Spicer EK, Rush J, Fung C, Reha-Krantz LJ, Karam JD, Konigsberg WH.

J Biol Chem. 1988 Jun 5;263(16):7478-86.

50.

Mutational specificity of a bacteriophage T4 DNA polymerase mutant, mel88.

Reha-Krantz LJ.

Mol Gen Genet. 1987 Aug;209(1):90-3.

PMID:
3312960

Supplemental Content

Loading ...
Support Center