Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 123

1.

Synaptotagmin 7 Mediates Both Facilitation and Asynchronous Release at Granule Cell Synapses.

Turecek J, Regehr WG.

J Neurosci. 2018 Mar 28;38(13):3240-3251. doi: 10.1523/JNEUROSCI.3207-17.2018.

PMID:
29593071
2.

Silk Fibroin Films Facilitate Single-Step Targeted Expression of Optogenetic Proteins.

Jackman SL, Chen CH, Chettih SN, Neufeld SQ, Drew IR, Agba CK, Flaquer I, Stefano AN, Kennedy TJ, Belinsky JE, Roberston K, Beron CC, Sabatini BL, Harvey CD, Regehr WG.

Cell Rep. 2018 Mar 20;22(12):3351-3361. doi: 10.1016/j.celrep.2018.02.081.

3.

Retraction: Protein kinase C is a calcium sensor for presynaptic short-term plasticity.

Fioravante D, Chu Y, de Jong AP, Leitges M, Kaeser PS, Regehr WG.

Elife. 2018 Mar 7;7. pii: e35974. doi: 10.7554/eLife.35974. No abstract available.

4.

Synaptotagmin 7 confers frequency invariance onto specialized depressing synapses.

Turecek J, Jackman SL, Regehr WG.

Nature. 2017 Nov 23;551(7681):503-506. doi: 10.1038/nature24474. Epub 2017 Oct 30.

5.

The Mechanisms and Functions of Synaptic Facilitation.

Jackman SL, Regehr WG.

Neuron. 2017 May 3;94(3):447-464. doi: 10.1016/j.neuron.2017.02.047. Review.

6.

The readily releasable pool of synaptic vesicles.

Kaeser PS, Regehr WG.

Curr Opin Neurobiol. 2017 Apr;43:63-70. doi: 10.1016/j.conb.2016.12.012. Epub 2017 Jan 16. Review.

7.

Synaptic Specializations Support Frequency-Independent Purkinje Cell Output from the Cerebellar Cortex.

Turecek J, Jackman SL, Regehr WG.

Cell Rep. 2016 Dec 20;17(12):3256-3268. doi: 10.1016/j.celrep.2016.11.081.

8.

Purkinje Cells Directly Inhibit Granule Cells in Specialized Regions of the Cerebellar Cortex.

Guo C, Witter L, Rudolph S, Elliott HL, Ennis KA, Regehr WG.

Neuron. 2016 Sep 21;91(6):1330-1341. doi: 10.1016/j.neuron.2016.08.011. Epub 2016 Sep 1.

9.

Purkinje Cell Collaterals Enable Output Signals from the Cerebellar Cortex to Feed Back to Purkinje Cells and Interneurons.

Witter L, Rudolph S, Pressler RT, Lahlaf SI, Regehr WG.

Neuron. 2016 Jul 20;91(2):312-9. doi: 10.1016/j.neuron.2016.05.037. Epub 2016 Jun 23.

10.

Calcium-Dependent Protein Kinase C Is Not Required for Post-Tetanic Potentiation at the Hippocampal CA3 to CA1 Synapse.

Wang CC, Weyrer C, Paturu M, Fioravante D, Regehr WG.

J Neurosci. 2016 Jun 15;36(24):6393-402. doi: 10.1523/JNEUROSCI.0708-16.2016.

11.

Determining synaptic parameters using high-frequency activation.

Thanawala MS, Regehr WG.

J Neurosci Methods. 2016 May 1;264:136-152. doi: 10.1016/j.jneumeth.2016.02.021. Epub 2016 Mar 10.

12.

The calcium sensor synaptotagmin 7 is required for synaptic facilitation.

Jackman SL, Turecek J, Belinsky JE, Regehr WG.

Nature. 2016 Jan 7;529(7584):88-91. doi: 10.1038/nature16507.

13.

Active Dendrites and Differential Distribution of Calcium Channels Enable Functional Compartmentalization of Golgi Cells.

Rudolph S, Hull C, Regehr WG.

J Neurosci. 2015 Nov 25;35(47):15492-504. doi: 10.1523/JNEUROSCI.3132-15.2015.

14.

Cell type-specific manipulation with GFP-dependent Cre recombinase.

Tang JC, Rudolph S, Dhande OS, Abraira VE, Choi S, Lapan SW, Drew IR, Drokhlyansky E, Huberman AD, Regehr WG, Cepko CL.

Nat Neurosci. 2015 Sep;18(9):1334-41. doi: 10.1038/nn.4081. Epub 2015 Aug 10.

15.

Protein kinase C is a calcium sensor for presynaptic short-term plasticity.

Fioravante D, Chu Y, de Jong AP, Leitges M, Kaeser PS, Regehr WG.

Elife. 2014 Aug 5;3:e03011. doi: 10.7554/eLife.03011. Retraction in: Elife. 2018 Mar 07;7:null.

16.

Promoter decommissioning by the NuRD chromatin remodeling complex triggers synaptic connectivity in the mammalian brain.

Yamada T, Yang Y, Hemberg M, Yoshida T, Cho HY, Murphy JP, Fioravante D, Regehr WG, Gygi SP, Georgopoulos K, Bonni A.

Neuron. 2014 Jul 2;83(1):122-34. doi: 10.1016/j.neuron.2014.05.039.

17.

Presynaptic calcium measurements using bulk loading of acetoxymethyl indicators.

Brenowitz SD, Regehr WG.

Cold Spring Harb Protoc. 2014 Jul 1;2014(7):750-7. doi: 10.1101/pdb.prot081828.

PMID:
24987144
18.

The substantia nigra conveys target-dependent excitatory and inhibitory outputs from the basal ganglia to the thalamus.

Antal M, Beneduce BM, Regehr WG.

J Neurosci. 2014 Jun 4;34(23):8032-42. doi: 10.1523/JNEUROSCI.0236-14.2014.

19.

Achieving high-frequency optical control of synaptic transmission.

Jackman SL, Beneduce BM, Drew IR, Regehr WG.

J Neurosci. 2014 May 28;34(22):7704-14. doi: 10.1523/JNEUROSCI.4694-13.2014.

20.

Calcium-dependent PKC isoforms have specialized roles in short-term synaptic plasticity.

Chu Y, Fioravante D, Leitges M, Regehr WG.

Neuron. 2014 May 21;82(4):859-71. doi: 10.1016/j.neuron.2014.04.003. Epub 2014 May 1.

21.

Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release.

Kaeser PS, Regehr WG.

Annu Rev Physiol. 2014;76:333-63. doi: 10.1146/annurev-physiol-021113-170338. Epub 2013 Nov 21. Review.

22.

Normalization of input patterns in an associative network.

Liu A, Regehr WG.

J Neurophysiol. 2014 Feb;111(3):544-51. doi: 10.1152/jn.00678.2013. Epub 2013 Nov 13.

23.

Hyperpolarization induces a long-term increase in the spontaneous firing rate of cerebellar Golgi cells.

Hull CA, Chu Y, Thanawala M, Regehr WG.

J Neurosci. 2013 Apr 3;33(14):5895-902. doi: 10.1523/JNEUROSCI.4052-12.2013.

24.

Presynaptic calcium influx controls neurotransmitter release in part by regulating the effective size of the readily releasable pool.

Thanawala MS, Regehr WG.

J Neurosci. 2013 Mar 13;33(11):4625-33. doi: 10.1523/JNEUROSCI.4031-12.2013.

25.

Metabotropic glutamate receptors drive global persistent inhibition in the visual thalamus.

Pressler RT, Regehr WG.

J Neurosci. 2013 Feb 6;33(6):2494-506. doi: 10.1523/JNEUROSCI.3458-12.2013.

26.

Calcium-dependent isoforms of protein kinase C mediate glycine-induced synaptic enhancement at the calyx of Held.

Chu Y, Fioravante D, Thanawala M, Leitges M, Regehr WG.

J Neurosci. 2012 Oct 3;32(40):13796-804. doi: 10.1523/JNEUROSCI.2158-12.2012.

27.
28.

Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice.

Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR, Leech JM, Steinberg J, Crawley JN, Regehr WG, Sahin M.

Nature. 2012 Aug 30;488(7413):647-51. doi: 10.1038/nature11310.

29.

Short-term presynaptic plasticity.

Regehr WG.

Cold Spring Harb Perspect Biol. 2012 Jul 1;4(7):a005702. doi: 10.1101/cshperspect.a005702. Review.

30.

Presynaptic imaging of projection fibers by in vivo injection of dextran-conjugated calcium indicators.

Brenowitz SD, Regehr WG.

Cold Spring Harb Protoc. 2012 Apr 1;2012(4):465-71. doi: 10.1101/pdb.prot068551.

31.

Identification of an inhibitory circuit that regulates cerebellar Golgi cell activity.

Hull C, Regehr WG.

Neuron. 2012 Jan 12;73(1):149-58. doi: 10.1016/j.neuron.2011.10.030.

32.

Calcium-dependent isoforms of protein kinase C mediate posttetanic potentiation at the calyx of Held.

Fioravante D, Chu Y, Myoga MH, Leitges M, Regehr WG.

Neuron. 2011 Jun 9;70(5):1005-19. doi: 10.1016/j.neuron.2011.04.019.

33.
34.

Short-term forms of presynaptic plasticity.

Fioravante D, Regehr WG.

Curr Opin Neurobiol. 2011 Apr;21(2):269-74. doi: 10.1016/j.conb.2011.02.003. Epub 2011 Feb 23. Review.

35.

Presynaptic CB1 receptors regulate synaptic plasticity at cerebellar parallel fiber synapses.

Carey MR, Myoga MH, McDaniels KR, Marsicano G, Lutz B, Mackie K, Regehr WG.

J Neurophysiol. 2011 Feb;105(2):958-63. doi: 10.1152/jn.00980.2010. Epub 2010 Nov 17.

36.

Phosphatase activity controls the ups and downs of cerebellar learning.

Carey MR, Regehr WG.

Neuron. 2010 Aug 26;67(4):525-6. doi: 10.1016/j.neuron.2010.08.015.

37.

Cholinergic activation of M2 receptors leads to context-dependent modulation of feedforward inhibition in the visual thalamus.

Antal M, Acuna-Goycolea C, Pressler RT, Blitz DM, Regehr WG.

PLoS Biol. 2010 Apr 6;8(4):e1000348. doi: 10.1371/journal.pbio.1000348.

38.
39.

Dynamics of fast and slow inhibition from cerebellar golgi cells allow flexible control of synaptic integration.

Crowley JJ, Fioravante D, Regehr WG.

Neuron. 2009 Sep 24;63(6):843-53. doi: 10.1016/j.neuron.2009.09.004.

40.

Linking genetically defined neurons to behavior through a broadly applicable silencing allele.

Kim JC, Cook MN, Carey MR, Shen C, Regehr WG, Dymecki SM.

Neuron. 2009 Aug 13;63(3):305-15. doi: 10.1016/j.neuron.2009.07.010.

41.

Activity-dependent regulation of synapses by retrograde messengers.

Regehr WG, Carey MR, Best AR.

Neuron. 2009 Jul 30;63(2):154-70. doi: 10.1016/j.neuron.2009.06.021. Review.

42.

Somatic spikes regulate dendritic signaling in small neurons in the absence of backpropagating action potentials.

Myoga MH, Beierlein M, Regehr WG.

J Neurosci. 2009 Jun 17;29(24):7803-14. doi: 10.1523/JNEUROSCI.0030-09.2009.

43.

Inhibitory regulation of electrically coupled neurons in the inferior olive is mediated by asynchronous release of GABA.

Best AR, Regehr WG.

Neuron. 2009 May 28;62(4):555-65. doi: 10.1016/j.neuron.2009.04.018.

44.

Noradrenergic control of associative synaptic plasticity by selective modulation of instructive signals.

Carey MR, Regehr WG.

Neuron. 2009 Apr 16;62(1):112-22. doi: 10.1016/j.neuron.2009.02.022.

45.

Retrograde tuning of tuning.

Xu-Friedman MA, Regehr WG.

Neuron. 2008 Jul 10;59(1):3-5. doi: 10.1016/j.neuron.2008.06.013.

46.

Serotonin evokes endocannabinoid release and retrogradely suppresses excitatory synapses.

Best AR, Regehr WG.

J Neurosci. 2008 Jun 18;28(25):6508-15. doi: 10.1523/JNEUROSCI.0678-08.2008.

47.

Active dendritic conductances dynamically regulate GABA release from thalamic interneurons.

Acuna-Goycolea C, Brenowitz SD, Regehr WG.

Neuron. 2008 Feb 7;57(3):420-31. doi: 10.1016/j.neuron.2007.12.022.

48.

Timing dependence of the induction of cerebellar LTD.

Safo P, Regehr WG.

Neuropharmacology. 2008 Jan;54(1):213-8. Epub 2007 Jun 26.

49.

Supplemental Content

Loading ...
Support Center