Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 22

1.

High Impact: The Role of Promiscuous Binding Sites in Polypharmacology.

Cerisier N, Petitjean M, Regad L, Bayard Q, Réau M, Badel A, Camproux AC.

Molecules. 2019 Jul 10;24(14). pii: E2529. doi: 10.3390/molecules24142529.

2.

HIV-1 protease, Gag and gp41 baseline substitutions associated with virological response to a PI-based regimen.

Perrier M, Castain L, Regad L, Todesco E, Landman R, Visseaux B, Yazdanpanah Y, Rodriguez C, Joly V, Calvez V, Marcelin AG, Descamps D, Charpentier C.

J Antimicrob Chemother. 2019 Jun 1;74(6):1679-1692. doi: 10.1093/jac/dkz043.

PMID:
30768160
3.

Characterizing the structural variability of HIV-2 protease upon the binding of diverse ligands using a structural alphabet approach.

Triki D, Fartek S, Visseaux B, Descamps D, Camproux AC, Regad L.

J Biomol Struct Dyn. 2019 Oct;37(17):4658-4670. doi: 10.1080/07391102.2018.1562985. Epub 2019 Feb 1.

PMID:
30593258
4.

SAFlex: A structural alphabet extension to integrate protein structural flexibility and missing data information.

Allam I, Flatters D, Caumes G, Regad L, Delos V, Nuel G, Camproux AC.

PLoS One. 2018 Jul 5;13(7):e0198854. doi: 10.1371/journal.pone.0198854. eCollection 2018.

5.

Exploration of the effect of sequence variations located inside the binding pocket of HIV-1 and HIV-2 proteases.

Triki D, Billot T, Visseaux B, Descamps D, Flatters D, Camproux AC, Regad L.

Sci Rep. 2018 Apr 10;8(1):5789. doi: 10.1038/s41598-018-24124-5.

6.

Analysis of the HIV-2 protease's adaptation to various ligands: characterization of backbone asymmetry using a structural alphabet.

Triki D, Cano Contreras ME, Flatters D, Visseaux B, Descamps D, Camproux AC, Regad L.

Sci Rep. 2018 Jan 15;8(1):710. doi: 10.1038/s41598-017-18941-3.

7.

Exploring the potential of a structural alphabet-based tool for mining multiple target conformations and target flexibility insight.

Regad L, Chéron JB, Triki D, Senac C, Flatters D, Camproux AC.

PLoS One. 2017 Aug 17;12(8):e0182972. doi: 10.1371/journal.pone.0182972. eCollection 2017.

8.

Statistical Profiling of One Promiscuous Protein Binding Site: Illustrated by Urokinase Catalytic Domain.

Cerisier N, Regad L, Triki D, Petitjean M, Flatters D, Camproux AC.

Mol Inform. 2017 Oct;36(10). doi: 10.1002/minf.201700040. Epub 2017 Jul 11.

PMID:
28696518
9.

Cavity Versus Ligand Shape Descriptors: Application to Urokinase Binding Pockets.

Cerisier N, Regad L, Triki D, Camproux AC, Petitjean M.

J Comput Biol. 2017 Nov;24(11):1134-1137. doi: 10.1089/cmb.2017.0061. Epub 2017 Jun 1.

10.

Investigating the Importance of the Pocket-estimation Method in Pocket-based Approaches: An Illustration Using Pocket-ligand Classification.

Caumes G, Borrel A, Abi Hussein H, Camproux AC, Regad L.

Mol Inform. 2017 Sep;36(9). doi: 10.1002/minf.201700025. Epub 2017 Apr 27.

PMID:
28452177
11.

Structural Isosteres of Phosphate Groups in the Protein Data Bank.

Zhang Y, Borrel A, Ghemtio L, Regad L, Boije Af Gennäs G, Camproux AC, Yli-Kauhaluoma J, Xhaard H.

J Chem Inf Model. 2017 Mar 27;57(3):499-516. doi: 10.1021/acs.jcim.6b00519. Epub 2017 Mar 13.

PMID:
28234462
12.

PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins.

Hussein HA, Borrel A, Geneix C, Petitjean M, Regad L, Camproux AC.

Nucleic Acids Res. 2015 Jul 1;43(W1):W436-42. doi: 10.1093/nar/gkv462. Epub 2015 May 8.

13.

PockDrug: A Model for Predicting Pocket Druggability That Overcomes Pocket Estimation Uncertainties.

Borrel A, Regad L, Xhaard H, Petitjean M, Camproux AC.

J Chem Inf Model. 2015 Apr 27;55(4):882-95. doi: 10.1021/ci5006004. Epub 2015 Apr 16.

PMID:
25835082
14.

Structure of the prolyl-acyl carrier protein oxidase involved in the biosynthesis of the cyanotoxin anatoxin-a.

Moncoq K, Regad L, Mann S, Méjean A, Ploux O.

Acta Crystallogr D Biol Crystallogr. 2013 Dec;69(Pt 12):2340-52. doi: 10.1107/S0907444913021859. Epub 2013 Nov 19.

PMID:
24311576
15.

Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction.

Pérot S, Regad L, Reynès C, Spérandio O, Miteva MA, Villoutreix BO, Camproux AC.

PLoS One. 2013 Jun 20;8(6):e63730. doi: 10.1371/journal.pone.0063730. Print 2013.

16.

Characterization of Arabidopsis calcium-dependent protein kinases: activated or not by calcium?

Boudsocq M, Droillard MJ, Regad L, Laurière C.

Biochem J. 2012 Oct 15;447(2):291-9.

PMID:
22827269
17.

Dissecting protein loops with a statistical scalpel suggests a functional implication of some structural motifs.

Regad L, Martin J, Camproux AC.

BMC Bioinformatics. 2011 Jun 20;12:247. doi: 10.1186/1471-2105-12-247.

18.

SA-Mot: a web server for the identification of motifs of interest extracted from protein loops.

Regad L, Saladin A, Maupetit J, Geneix C, Camproux AC.

Nucleic Acids Res. 2011 Jul;39(Web Server issue):W203-9. doi: 10.1093/nar/gkr410. Epub 2011 Jun 10.

19.

Exact distribution of a pattern in a set of random sequences generated by a Markov source: applications to biological data.

Nuel G, Regad L, Martin J, Camproux AC.

Algorithms Mol Biol. 2010 Jan 26;5:15. doi: 10.1186/1748-7188-5-15.

20.

Mining protein loops using a structural alphabet and statistical exceptionality.

Regad L, Martin J, Nuel G, Camproux AC.

BMC Bioinformatics. 2010 Feb 4;11:75. doi: 10.1186/1471-2105-11-75.

21.

Taking advantage of local structure descriptors to analyze interresidue contacts in protein structures and protein complexes.

Martin J, Regad L, Etchebest C, Camproux AC.

Proteins. 2008 Nov 15;73(3):672-89. doi: 10.1002/prot.22091.

PMID:
18491388
22.

Structural deformation upon protein-protein interaction: a structural alphabet approach.

Martin J, Regad L, Lecornet H, Camproux AC.

BMC Struct Biol. 2008 Feb 28;8:12. doi: 10.1186/1472-6807-8-12.

Supplemental Content

Support Center