Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 175

1.

Genome Replication in Thermococcus kodakarensis Independent of Cdc6 and an Origin of Replication.

Gehring AM, Astling DP, Matsumi R, Burkhart BW, Kelman Z, Reeve JN, Jones KL, Santangelo TJ.

Front Microbiol. 2017 Oct 27;8:2084. doi: 10.3389/fmicb.2017.02084. eCollection 2017.

2.

Structure of histone-based chromatin in Archaea.

Mattiroli F, Bhattacharyya S, Dyer PN, White AE, Sandman K, Burkhart BW, Byrne KR, Lee T, Ahn NG, Santangelo TJ, Reeve JN, Luger K.

Science. 2017 Aug 11;357(6351):609-612. doi: 10.1126/science.aaj1849.

3.

The GAN Exonuclease or the Flap Endonuclease Fen1 and RNase HII Are Necessary for Viability of Thermococcus kodakarensis.

Burkhart BW, Cubonova L, Heider MR, Kelman Z, Reeve JN, Santangelo TJ.

J Bacteriol. 2017 Jun 13;199(13). pii: e00141-17. doi: 10.1128/JB.00141-17. Print 2017 Jul 1.

4.

Primary transcriptome map of the hyperthermophilic archaeon Thermococcus kodakarensis.

Jäger D, Förstner KU, Sharma CM, Santangelo TJ, Reeve JN.

BMC Genomics. 2014 Aug 16;15:684. doi: 10.1186/1471-2164-15-684.

5.

Archaeal nucleosome positioning in vivo and in vitro is directed by primary sequence motifs.

Nalabothula N, Xi L, Bhattacharyya S, Widom J, Wang JP, Reeve JN, Santangelo TJ, Fondufe-Mittendorf YN.

BMC Genomics. 2013 Jun 10;14:391. doi: 10.1186/1471-2164-14-391.

6.

Thermococcus kodakarensis has two functional PCNA homologs but only one is required for viability.

Pan M, Santangelo TJ, Čuboňová L, Li Z, Metangmo H, Ladner J, Hurwitz J, Reeve JN, Kelman Z.

Extremophiles. 2013 May;17(3):453-61. doi: 10.1007/s00792-013-0526-8. Epub 2013 Mar 24.

7.

Archaeal DNA polymerase D but not DNA polymerase B is required for genome replication in Thermococcus kodakarensis.

Cubonová L, Richardson T, Burkhart BW, Kelman Z, Connolly BA, Reeve JN, Santangelo TJ.

J Bacteriol. 2013 May;195(10):2322-8. doi: 10.1128/JB.02037-12. Epub 2013 Mar 15.

8.

An archaeal histone is required for transformation of Thermococcus kodakarensis.

Čuboňováa L, Katano M, Kanai T, Atomi H, Reeve JN, Santangelo TJ.

J Bacteriol. 2012 Dec;194(24):6864-74. doi: 10.1128/JB.01523-12. Epub 2012 Oct 12.

9.

Thermococcus kodakarensis encodes three MCM homologs but only one is essential.

Pan M, Santangelo TJ, Li Z, Reeve JN, Kelman Z.

Nucleic Acids Res. 2011 Dec;39(22):9671-80. doi: 10.1093/nar/gkr624. Epub 2011 Aug 5.

10.

Deletion of alternative pathways for reductant recycling in Thermococcus kodakarensis increases hydrogen production.

Santangelo TJ, Cuboňová L, Reeve JN.

Mol Microbiol. 2011 Aug;81(4):897-911. doi: 10.1111/j.1365-2958.2011.07734.x. Epub 2011 Jul 13.

11.

Archaea: very diverse, often different but never bad?

Reeve JN, Schleper C.

Curr Opin Microbiol. 2011 Jun;14(3):271-3. doi: 10.1016/j.mib.2011.04.011. Epub 2011 May 18. No abstract available.

PMID:
21550839
12.

A novel DNA nuclease is stimulated by association with the GINS complex.

Li Z, Pan M, Santangelo TJ, Chemnitz W, Yuan W, Edwards JL, Hurwitz J, Reeve JN, Kelman Z.

Nucleic Acids Res. 2011 Aug;39(14):6114-23. doi: 10.1093/nar/gkr181. Epub 2011 Mar 31.

13.

Preliminary crystallography confirms that the archaeal DNA-binding and tryptophan-sensing regulator TrpY is a dimer.

Cafasso J, Manjasetty BA, Karr EA, Sandman K, Chance MR, Reeve JN.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 Nov 1;66(Pt 11):1493-5. doi: 10.1107/S1744309110036031. Epub 2010 Oct 28.

14.

Affinity purification of an archaeal DNA replication protein network.

Li Z, Santangelo TJ, Cuboňová L, Reeve JN, Kelman Z.

MBio. 2010 Oct 26;1(5). pii: e00221-10. doi: 10.1128/mBio.00221-10.

15.

Deletion of switch 3 results in an archaeal RNA polymerase that is defective in transcript elongation.

Santangelo TJ, Reeve JN.

J Biol Chem. 2010 Jul 30;285(31):23908-15. doi: 10.1074/jbc.M109.094565. Epub 2010 May 28.

16.

Thermococcus kodakarensis genetics: TK1827-encoded beta-glycosidase, new positive-selection protocol, and targeted and repetitive deletion technology.

Santangelo TJ, Cubonová L, Reeve JN.

Appl Environ Microbiol. 2010 Feb;76(4):1044-52. doi: 10.1128/AEM.02497-09. Epub 2009 Dec 18.

17.

Archaeal intrinsic transcription termination in vivo.

Santangelo TJ, Cubonová L, Skinner KM, Reeve JN.

J Bacteriol. 2009 Nov;191(22):7102-8. doi: 10.1128/JB.00982-09. Epub 2009 Sep 11.

18.

Archaeal aIF2B interacts with eukaryotic translation initiation factors eIF2alpha and eIF2Balpha: Implications for aIF2B function and eIF2B regulation.

Dev K, Santangelo TJ, Rothenburg S, Neculai D, Dey M, Sicheri F, Dever TE, Reeve JN, Hinnebusch AG.

J Mol Biol. 2009 Sep 25;392(3):701-22. doi: 10.1016/j.jmb.2009.07.030. Epub 2009 Jul 17.

19.

The Fur iron regulator-like protein is cryptic in the hyperthermophilic archaeon Thermococcus kodakaraensis.

Louvel H, Kanai T, Atomi H, Reeve JN.

FEMS Microbiol Lett. 2009 Jun;295(1):117-28.

20.

Nanoarchaeal origin of histone H3?

Friedrich-Jahn U, Aigner J, Längst G, Reeve JN, Huber H.

J Bacteriol. 2009 Feb;191(3):1092-6. doi: 10.1128/JB.01431-08. Epub 2008 Dec 1.

21.

Archaeal RNA polymerase subunits E and F are not required for transcription in vitro, but a Thermococcus kodakarensis mutant lacking subunit F is temperature-sensitive.

Hirata A, Kanai T, Santangelo TJ, Tajiri M, Manabe K, Reeve JN, Imanaka T, Murakami KS.

Mol Microbiol. 2008 Nov;70(3):623-33. doi: 10.1111/j.1365-2958.2008.06430.x. Epub 2008 Sep 10.

22.

Archaeal chromatin proteins histone HMtB and Alba have lost DNA-binding ability in laboratory strains of Methanothermobacter thermautotrophicus.

Sandman K, Louvel H, Samson RY, Pereira SL, Reeve JN.

Extremophiles. 2008 Nov;12(6):811-7. doi: 10.1007/s00792-008-0185-3. Epub 2008 Aug 23.

23.

Shuttle vector expression in Thermococcus kodakaraensis: contributions of cis elements to protein synthesis in a hyperthermophilic archaeon.

Santangelo TJ, Cubonová L, Reeve JN.

Appl Environ Microbiol. 2008 May;74(10):3099-104. doi: 10.1128/AEM.00305-08. Epub 2008 Mar 31.

24.

TrpY regulation of trpB2 transcription in Methanothermobacter thermautotrophicus.

Karr EA, Sandman K, Lurz R, Reeve JN.

J Bacteriol. 2008 Apr;190(7):2637-41. doi: 10.1128/JB.01926-07. Epub 2008 Feb 8.

25.

Polarity in archaeal operon transcription in Thermococcus kodakaraensis.

Santangelo TJ, Cubonová L, Matsumi R, Atomi H, Imanaka T, Reeve JN.

J Bacteriol. 2008 Mar;190(6):2244-8. doi: 10.1128/JB.01811-07. Epub 2008 Jan 11.

26.

Deletion of the archaeal histone in Methanosarcina mazei Gö1 results in reduced growth and genomic transcription.

Weidenbach K, Glöer J, Ehlers C, Sandman K, Reeve JN, Schmitz RA.

Mol Microbiol. 2008 Feb;67(3):662-71. Epub 2007 Dec 17.

27.

Spontaneous trpY mutants and mutational analysis of the TrpY archaeal transcription regulator.

Cubonová L, Sandman K, Karr EA, Cochran AJ, Reeve JN.

J Bacteriol. 2007 Jun;189(11):4338-42. Epub 2007 Mar 30.

28.

TFB1 or TFB2 is sufficient for Thermococcus kodakaraensis viability and for basal transcription in vitro.

Santangelo TJ, Cubonová L, James CL, Reeve JN.

J Mol Biol. 2007 Mar 23;367(2):344-57. Epub 2006 Dec 30.

29.

Transcription and translation are coupled in Archaea.

French SL, Santangelo TJ, Beyer AL, Reeve JN.

Mol Biol Evol. 2007 Apr;24(4):893-5. Epub 2007 Jan 20.

PMID:
17237472
30.

Archaeal minichromosome maintenance (MCM) helicase can unwind DNA bound by archaeal histones and transcription factors.

Shin JH, Santangelo TJ, Xie Y, Reeve JN, Kelman Z.

J Biol Chem. 2007 Feb 16;282(7):4908-15. Epub 2006 Dec 9.

31.

Archaeal histones and the origin of the histone fold.

Sandman K, Reeve JN.

Curr Opin Microbiol. 2006 Oct;9(5):520-5. Epub 2006 Aug 22.

PMID:
16920388
32.

Archaeal RNA polymerase is sensitive to intrinsic termination directed by transcribed and remote sequences.

Santangelo TJ, Reeve JN.

J Mol Biol. 2006 Jan 13;355(2):196-210. Epub 2005 Nov 9.

PMID:
16305799
33.

Archaeal chromatin proteins: different structures but common function?

Sandman K, Reeve JN.

Curr Opin Microbiol. 2005 Dec;8(6):656-61. Epub 2005 Oct 26. Review.

PMID:
16256418
34.

Biology, biochemistry and the molecular machinery of Archaea.

Reeve JN, Schmitz RA.

Curr Opin Microbiol. 2005 Dec;8(6):627-9. Epub 2005 Oct 24. No abstract available.

PMID:
16246618
35.
36.

Histones in crenarchaea.

Cubonová L, Sandman K, Hallam SJ, Delong EF, Reeve JN.

J Bacteriol. 2005 Aug;187(15):5482-5.

37.

Use of a restriction enzyme-digested PCR product as substrate for helicase assays.

Shin JH, Reeve JN, Kelman Z.

Nucleic Acids Res. 2005 Jan 13;33(1):e8.

39.
40.

Archaeal histones: structures, stability and DNA binding.

Reeve JN, Bailey KA, Li WT, Marc F, Sandman K, Soares DJ.

Biochem Soc Trans. 2004 Apr;32(Pt 2):227-30. Review.

PMID:
15046577
41.

In vitro transcription assays using components from Methanothermobacter thermautotrophicus.

Xie Y, Reeve JN.

Methods Enzymol. 2003;370:66-72. No abstract available.

PMID:
14712634
42.

Molecular identification of bacteria and Eukarya inhabiting an Antarctic cryoconite hole.

Christner BC, Kvitko BH 2nd, Reeve JN.

Extremophiles. 2003 Jun;7(3):177-83. Epub 2003 Jan 30.

PMID:
12768448
44.

Bacterial recovery from ancient glacial ice.

Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN.

Environ Microbiol. 2003 May;5(5):433-6.

PMID:
12713469
45.

Archaeal chromatin and transcription.

Reeve JN.

Mol Microbiol. 2003 May;48(3):587-98. Review.

46.

Archaeal histone tetramerization determines DNA affinity and the direction of DNA supercoiling.

Marc F, Sandman K, Lurz R, Reeve JN.

J Biol Chem. 2002 Aug 23;277(34):30879-86. Epub 2002 Jun 10.

47.

The genome of M. acetivorans reveals extensive metabolic and physiological diversity.

Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W, Calvo S, Engels R, Smirnov S, Atnoor D, Brown A, Allen N, Naylor J, Stange-Thomann N, DeArellano K, Johnson R, Linton L, McEwan P, McKernan K, Talamas J, Tirrell A, Ye W, Zimmer A, Barber RD, Cann I, Graham DE, Grahame DA, Guss AM, Hedderich R, Ingram-Smith C, Kuettner HC, Krzycki JA, Leigh JA, Li W, Liu J, Mukhopadhyay B, Reeve JN, Smith K, Springer TA, Umayam LA, White O, White RH, Conway de Macario E, Ferry JG, Jarrell KF, Jing H, Macario AJ, Paulsen I, Pritchett M, Sowers KR, Swanson RV, Zinder SH, Lander E, Metcalf WW, Birren B.

Genome Res. 2002 Apr;12(4):532-42.

48.

Both DNA and histone fold sequences contribute to archaeal nucleosome stability.

Bailey KA, Marc F, Sandman K, Reeve JN.

J Biol Chem. 2002 Mar 15;277(11):9293-301. Epub 2001 Dec 21.

49.

Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice.

Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN.

Environ Microbiol. 2001 Sep;3(9):570-7.

PMID:
11683867
50.

Chromosome packaging by archaeal histones.

Sandman K, Reeve JN.

Adv Appl Microbiol. 2001;50:75-99. Review. No abstract available.

PMID:
11677690

Supplemental Content

Loading ...
Support Center