Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 38

1.

Veins and Arteries Build Hierarchical Branching Patterns Differently: Bottom-Up versus Top-Down.

Red-Horse K, Siekmann AF.

Bioessays. 2019 Mar;41(3):e1800198. doi: 10.1002/bies.201800198.

2.

A Unique Collateral Artery Development Program Promotes Neonatal Heart Regeneration.

Das S, Goldstone AB, Wang H, Farry J, D'Amato G, Paulsen MJ, Eskandari A, Hironaka CE, Phansalkar R, Sharma B, Rhee S, Shamskhou EA, Agalliu D, de Jesus Perez V, Woo YJ, Red-Horse K.

Cell. 2019 Feb 21;176(5):1128-1142.e18. doi: 10.1016/j.cell.2018.12.023. Epub 2019 Jan 24.

PMID:
30686582
3.

Characterization of Brain Dysfunction Induced by Bacterial Lipopeptides That Alter Neuronal Activity and Network in Rodent Brains.

Kim KM, Zamaleeva AI, Lee YW, Ahmed MR, Kim E, Lee HR, Pothineni VR, Tao J, Rhee S, Jayakumar M, Inayathullah M, Sivanesan S, Red-Horse K, Palmer TD, Park J, Madison DV, Lee HY, Rajadas J.

J Neurosci. 2018 Dec 12;38(50):10672-10691. doi: 10.1523/JNEUROSCI.0825-17.2018. Epub 2018 Oct 31.

4.

Large-Scale Single-Cell RNA-Seq Reveals Molecular Signatures of Heterogeneous Populations of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells.

Paik DT, Tian L, Lee J, Sayed N, Chen IY, Rhee S, Rhee JW, Kim Y, Wirka RC, Buikema JW, Wu SM, Red-Horse K, Quertermous T, Wu JC.

Circ Res. 2018 Aug 3;123(4):443-450. doi: 10.1161/CIRCRESAHA.118.312913.

PMID:
29986945
5.

Single-cell analysis of early progenitor cells that build coronary arteries.

Su T, Stanley G, Sinha R, D'Amato G, Das S, Rhee S, Chang AH, Poduri A, Raftrey B, Dinh TT, Roper WA, Li G, Quinn KE, Caron KM, Wu S, Miquerol L, Butcher EC, Weissman I, Quake S, Red-Horse K.

Nature. 2018 Jul;559(7714):356-362. doi: 10.1038/s41586-018-0288-7. Epub 2018 Jul 4.

6.

Endothelial deletion of Ino80 disrupts coronary angiogenesis and causes congenital heart disease.

Rhee S, Chung JI, King DA, D'amato G, Paik DT, Duan A, Chang A, Nagelberg D, Sharma B, Jeong Y, Diehn M, Wu JC, Morrison AJ, Red-Horse K.

Nat Commun. 2018 Jan 25;9(1):368. doi: 10.1038/s41467-017-02796-3.

7.

Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin's glucose-lowering effects.

Hwangbo C, Wu J, Papangeli I, Adachi T, Sharma B, Park S, Zhao L, Ju H, Go GW, Cui G, Inayathullah M, Job JK, Rajadas J, Kwei SL, Li MO, Morrison AR, Quertermous T, Mani A, Red-Horse K, Chun HJ.

Sci Transl Med. 2017 Sep 13;9(407). pii: eaad4000. doi: 10.1126/scitranslmed.aad4000.

8.

Alternative Progenitor Cells Compensate to Rebuild the Coronary Vasculature in Elabela- and Apj-Deficient Hearts.

Sharma B, Ho L, Ford GH, Chen HI, Goldstone AB, Woo YJ, Quertermous T, Reversade B, Red-Horse K.

Dev Cell. 2017 Sep 25;42(6):655-666.e3. doi: 10.1016/j.devcel.2017.08.008. Epub 2017 Sep 7.

9.

DACH1 stimulates shear stress-guided endothelial cell migration and coronary artery growth through the CXCL12-CXCR4 signaling axis.

Chang AH, Raftrey BC, D'Amato G, Surya VN, Poduri A, Chen HI, Goldstone AB, Woo J, Fuller GG, Dunn AR, Red-Horse K.

Genes Dev. 2017 Jul 1;31(13):1308-1324. doi: 10.1101/gad.301549.117. Epub 2017 Aug 4.

10.

Endothelial cells respond to the direction of mechanical stimuli through SMAD signaling to regulate coronary artery size.

Poduri A, Chang AH, Raftrey B, Rhee S, Van M, Red-Horse K.

Development. 2017 Sep 15;144(18):3241-3252. doi: 10.1242/dev.150904. Epub 2017 Jul 31.

11.

Cellular plasticity in cardiovascular development and disease.

Das S, Red-Horse K.

Dev Dyn. 2017 Apr;246(4):328-335. doi: 10.1002/dvdy.24486. Epub 2017 Feb 24. Review.

12.

Coronary Artery Development: Progenitor Cells and Differentiation Pathways.

Sharma B, Chang A, Red-Horse K.

Annu Rev Physiol. 2017 Feb 10;79:1-19. doi: 10.1146/annurev-physiol-022516-033953. Epub 2016 Dec 9. Review.

13.

MicroRNA 139-5p coordinates APLNR-CXCR4 crosstalk during vascular maturation.

Papangeli I, Kim J, Maier I, Park S, Lee A, Kang Y, Tanaka K, Khan OF, Ju H, Kojima Y, Red-Horse K, Anderson DG, Siekmann AF, Chun HJ.

Nat Commun. 2016 Apr 12;7:11268. doi: 10.1038/ncomms11268.

14.

Pericytes are progenitors for coronary artery smooth muscle.

Volz KS, Jacobs AH, Chen HI, Poduri A, McKay AS, Riordan DP, Kofler N, Kitajewski J, Weissman I, Red-Horse K.

Elife. 2015 Oct 19;4. pii: e10036. doi: 10.7554/eLife.10036.

15.

Genetic targeting of sprouting angiogenesis using Apln-CreER.

Liu Q, Hu T, He L, Huang X, Tian X, Zhang H, He L, Pu W, Zhang L, Sun H, Fang J, Yu Y, Duan S, Hu C, Hui L, Zhang H, Quertermous T, Xu Q, Red-Horse K, Wythe JD, Zhou B.

Nat Commun. 2015 Jan 19;6:6020. doi: 10.1038/ncomms7020.

16.

The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis.

Chen HI, Sharma B, Akerberg BN, Numi HJ, Kivelä R, Saharinen P, Aghajanian H, McKay AS, Bogard PE, Chang AH, Jacobs AH, Epstein JA, Stankunas K, Alitalo K, Red-Horse K.

Development. 2014 Dec;141(23):4500-12. doi: 10.1242/dev.113639. Epub 2014 Nov 5.

17.

Oxygen regulates human cytotrophoblast migration by controlling chemokine and receptor expression.

Schanz A, Red-Horse K, Hess AP, Baston-Büst DM, Heiss C, Krüssel JS.

Placenta. 2014 Dec;35(12):1089-94. doi: 10.1016/j.placenta.2014.09.012. Epub 2014 Sep 26.

PMID:
25293376
18.

VEGF-C and aortic cardiomyocytes guide coronary artery stem development.

Chen HI, Poduri A, Numi H, Kivela R, Saharinen P, McKay AS, Raftrey B, Churko J, Tian X, Zhou B, Wu JC, Alitalo K, Red-Horse K.

J Clin Invest. 2014 Nov;124(11):4899-914. doi: 10.1172/JCI77483. Epub 2014 Oct 1.

19.

Developmental heterogeneity of cardiac fibroblasts does not predict pathological proliferation and activation.

Ali SR, Ranjbarvaziri S, Talkhabi M, Zhao P, Subat A, Hojjat A, Kamran P, Müller AM, Volz KS, Tang Z, Red-Horse K, Ardehali R.

Circ Res. 2014 Sep 12;115(7):625-35. doi: 10.1161/CIRCRESAHA.115.303794. Epub 2014 Jul 18.

PMID:
25037571
20.

Exploring the world of human development and reproduction.

Red-Horse K, Drake PM, Fisher S.

Int J Dev Biol. 2014;58(2-4):87-93. doi: 10.1387/ijdb.140063kr.

21.

Human induced pluripotent stem cell-derived cardiomyocytes as an in vitro model for coxsackievirus B3-induced myocarditis and antiviral drug screening platform.

Sharma A, Marceau C, Hamaguchi R, Burridge PW, Rajarajan K, Churko JM, Wu H, Sallam KI, Matsa E, Sturzu AC, Che Y, Ebert A, Diecke S, Liang P, Red-Horse K, Carette JE, Wu SM, Wu JC.

Circ Res. 2014 Aug 29;115(6):556-66. doi: 10.1161/CIRCRESAHA.115.303810. Epub 2014 Jul 11.

22.

Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries.

Tian X, Hu T, Zhang H, He L, Huang X, Liu Q, Yu W, He L, Yang Z, Zhang Z, Zhong TP, Yang X, Yang Z, Yan Y, Baldini A, Sun Y, Lu J, Schwartz RJ, Evans SM, Gittenberger-de Groot AC, Red-Horse K, Zhou B.

Cell Res. 2013 Sep;23(9):1075-90. doi: 10.1038/cr.2013.83. Epub 2013 Jun 25.

23.

Radial construction of an arterial wall.

Greif DM, Kumar M, Lighthouse JK, Hum J, An A, Ding L, Red-Horse K, Espinoza FH, Olson L, Offermanns S, Krasnow MA.

Dev Cell. 2012 Sep 11;23(3):482-93. doi: 10.1016/j.devcel.2012.07.009.

24.

Coronary arteries form by developmental reprogramming of venous cells.

Red-Horse K, Ueno H, Weissman IL, Krasnow MA.

Nature. 2010 Mar 25;464(7288):549-53. doi: 10.1038/nature08873.

25.

Lymphatic vessel dynamics in the uterine wall.

Red-Horse K.

Placenta. 2008 Mar;29 Suppl A:S55-9. Epub 2007 Dec 21. Review.

26.

Vascular targeting via caveolae.

Red-Horse K, Ferrara N.

Nat Biotechnol. 2007 Apr;25(4):431-2. No abstract available.

PMID:
17420750
27.

Literature watch. Cytotrophoblast induction of arterial apoptosis and lymphangiogenesis in an in vivo model of human placentation.

Red-Horse K, Rivera J, Schanz A, Zhou Y, Winn V, Kapidzic M, Maltepe E, Okazaki K, Kochman R, Vo KC, Giudice L, Erlebacher A, McCune JM, Stoddart CA, Fisher SJ.

Lymphat Res Biol. 2006;4(4):229-42. No abstract available.

PMID:
17394406
28.

Endothelium-microenvironment interactions in the developing embryo and in the adult.

Red-Horse K, Crawford Y, Shojaei F, Ferrara N.

Dev Cell. 2007 Feb;12(2):181-94. Review.

29.

Imaging tumor angiogenesis.

Red-Horse K, Ferrara N.

J Clin Invest. 2006 Oct;116(10):2585-7.

30.

Cytotrophoblast induction of arterial apoptosis and lymphangiogenesis in an in vivo model of human placentation.

Red-Horse K, Rivera J, Schanz A, Zhou Y, Winn V, Kapidzic M, Maltepe E, Okazaki K, Kochman R, Vo KC, Giudice L, Erlebacher A, McCune JM, Stoddart CA, Fisher SJ.

J Clin Invest. 2006 Oct;116(10):2643-52. Epub 2006 Sep 21.

31.

EPHB4 regulates chemokine-evoked trophoblast responses: a mechanism for incorporating the human placenta into the maternal circulation.

Red-Horse K, Kapidzic M, Zhou Y, Feng KT, Singh H, Fisher SJ.

Development. 2005 Sep;132(18):4097-106. Epub 2005 Aug 17.

32.

Hypoxia-inducible factor-dependent histone deacetylase activity determines stem cell fate in the placenta.

Maltepe E, Krampitz GW, Okazaki KM, Red-Horse K, Mak W, Simon MC, Fisher SJ.

Development. 2005 Aug;132(15):3393-403. Epub 2005 Jun 29.

33.

Functional and placental expression analysis of the human NRF3 transcription factor.

Chénais B, Derjuga A, Massrieh W, Red-Horse K, Bellingard V, Fisher SJ, Blank V.

Mol Endocrinol. 2005 Jan;19(1):125-37. Epub 2004 Sep 23.

PMID:
15388789
34.

Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface.

Red-Horse K, Zhou Y, Genbacev O, Prakobphol A, Foulk R, McMaster M, Fisher SJ.

J Clin Invest. 2004 Sep;114(6):744-54. Review.

35.

Human pregnancy: the role of chemokine networks at the fetal-maternal interface.

Red-Horse K, Drake PM, Fisher SJ.

Expert Rev Mol Med. 2004 May 10;6(11):1-14. Review.

PMID:
15130179
36.
37.

Chemokine expression and function at the human maternal-fetal interface.

Drake PM, Red-Horse K, Fisher SJ.

Rev Endocr Metab Disord. 2002 May;3(2):159-65. Review. No abstract available.

PMID:
12007293
38.

Supplemental Content

Loading ...
Support Center