Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 45

1.

Publisher Correction: The cytoplasmic dynein transport machinery and its many cargoes.

Reck-Peterson SL, Redwine WB, Vale RD, Carter AP.

Nat Rev Mol Cell Biol. 2018 May 8. doi: 10.1038/s41580-018-0021-2. [Epub ahead of print]

PMID:
29740130
2.

The cytoplasmic dynein transport machinery and its many cargoes.

Reck-Peterson SL, Redwine WB, Vale RD, Carter AP.

Nat Rev Mol Cell Biol. 2018 Jun;19(6):382-398. doi: 10.1038/s41580-018-0004-3. Review. Erratum in: Nat Rev Mol Cell Biol. 2018 May 8;:.

3.

Lis1 Has Two Opposing Modes of Regulating Cytoplasmic Dynein.

DeSantis ME, Cianfrocco MA, Htet ZM, Tran PT, Reck-Peterson SL, Leschziner AE.

Cell. 2017 Sep 7;170(6):1197-1208.e12. doi: 10.1016/j.cell.2017.08.037.

4.

The human cytoplasmic dynein interactome reveals novel activators of motility.

Redwine WB, DeSantis ME, Hollyer I, Htet ZM, Tran PT, Swanson SK, Florens L, Washburn MP, Reck-Peterson SL.

Elife. 2017 Jul 18;6. pii: e28257. doi: 10.7554/eLife.28257.

5.

Angular measurements of the dynein ring reveal a stepping mechanism dependent on a flexible stalk.

Lippert LG, Dadosh T, Hadden JA, Karnawat V, Diroll BT, Murray CB, Holzbaur ELF, Schulten K, Reck-Peterson SL, Goldman YE.

Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):E4564-E4573. doi: 10.1073/pnas.1620149114. Epub 2017 May 22.

6.

Hitchhiking: A Non-Canonical Mode of Microtubule-Based Transport.

Salogiannis J, Reck-Peterson SL.

Trends Cell Biol. 2017 Feb;27(2):141-150. doi: 10.1016/j.tcb.2016.09.005. Epub 2016 Sep 21. Review.

7.

Peroxisomes move by hitchhiking on early endosomes using the novel linker protein PxdA.

Salogiannis J, Egan MJ, Reck-Peterson SL.

J Cell Biol. 2016 Feb 1;212(3):289-96. doi: 10.1083/jcb.201512020. Epub 2016 Jan 25.

8.

Mechanism and regulation of cytoplasmic dynein.

Cianfrocco MA, DeSantis ME, Leschziner AE, Reck-Peterson SL.

Annu Rev Cell Dev Biol. 2015;31:83-108. doi: 10.1146/annurev-cellbio-100814-125438. Epub 2015 Sep 30. Review.

9.

Dynactin revealed.

Reck-Peterson SL.

Nat Struct Mol Biol. 2015 May;22(5):359-60. doi: 10.1038/nsmb.3022. No abstract available.

PMID:
25945887
10.

Cytoplasmic dynein is required for the spatial organization of protein aggregates in filamentous fungi.

Egan MJ, McClintock MA, Hollyer IH, Elliott HL, Reck-Peterson SL.

Cell Rep. 2015 Apr 14;11(2):201-9.

11.

Lis1 regulates dynein by sterically blocking its mechanochemical cycle.

Toropova K, Zou S, Roberts AJ, Redwine WB, Goodman BS, Reck-Peterson SL, Leschziner AE.

Elife. 2014 Nov 7;3. doi: 10.7554/eLife.03372.

12.

Characterization of the mutagenic spectrum of 4-nitroquinoline 1-oxide (4-NQO) in Aspergillus nidulans by whole genome sequencing.

Downes DJ, Chonofsky M, Tan K, Pfannenstiel BT, Reck-Peterson SL, Todd RB.

G3 (Bethesda). 2014 Oct 27;4(12):2483-92. doi: 10.1534/g3.114.014712.

13.

Molecular motors: Shifting gears with light.

Reck-Peterson SL.

Nat Nanotechnol. 2014 Sep;9(9):661-2. doi: 10.1038/nnano.2014.188. No abstract available.

PMID:
25182035
14.

Reconstitution of dynein transport to the microtubule plus end by kinesin.

Roberts AJ, Goodman BS, Reck-Peterson SL.

Elife. 2014 Jun 10;3:e02641. doi: 10.7554/eLife.02641.

15.

Human CFEOM1 mutations attenuate KIF21A autoinhibition and cause oculomotor axon stalling.

Cheng L, Desai J, Miranda CJ, Duncan JS, Qiu W, Nugent AA, Kolpak AL, Wu CC, Drokhlyansky E, Delisle MM, Chan WM, Wei Y, Propst F, Reck-Peterson SL, Fritzsch B, Engle EC.

Neuron. 2014 Apr 16;82(2):334-49. doi: 10.1016/j.neuron.2014.02.038. Epub 2014 Mar 20.

16.

Engineering defined motor ensembles with DNA origami.

Goodman BS, Reck-Peterson SL.

Methods Enzymol. 2014;540:169-88. doi: 10.1016/B978-0-12-397924-7.00010-8. Review.

PMID:
24630107
17.

A microscopy-based screen employing multiplex genome sequencing identifies cargo-specific requirements for dynein velocity.

Tan K, Roberts AJ, Chonofsky M, Egan MJ, Reck-Peterson SL.

Mol Biol Cell. 2014 Mar;25(5):669-78. doi: 10.1091/mbc.E13-09-0557. Epub 2014 Jan 8.

18.

Teaming up: from motors to people.

Reck-Peterson SL.

Mol Biol Cell. 2013 Nov;24(21):3267-9. doi: 10.1091/mbc.E13-07-0402.

19.

Microtubule-based transport in filamentous fungi.

Egan MJ, McClintock MA, Reck-Peterson SL.

Curr Opin Microbiol. 2012 Dec;15(6):637-45. doi: 10.1016/j.mib.2012.10.003. Epub 2012 Nov 2. Review.

20.

Tug-of-war in motor protein ensembles revealed with a programmable DNA origami scaffold.

Derr ND, Goodman BS, Jungmann R, Leschziner AE, Shih WM, Reck-Peterson SL.

Science. 2012 Nov 2;338(6107):662-5. doi: 10.1126/science.1226734. Epub 2012 Oct 11.

21.

Engineered, harnessed, and hijacked: synthetic uses for cytoskeletal systems.

Goodman BS, Derr ND, Reck-Peterson SL.

Trends Cell Biol. 2012 Dec;22(12):644-52. doi: 10.1016/j.tcb.2012.09.005. Epub 2012 Oct 8. Review.

22.

Structural basis for microtubule binding and release by dynein.

Redwine WB, Hernandez-Lopez R, Zou S, Huang J, Reck-Peterson SL, Leschziner AE.

Science. 2012 Sep 21;337(6101):1532-1536. doi: 10.1126/science.1224151.

23.

Lis1 acts as a "clutch" between the ATPase and microtubule-binding domains of the dynein motor.

Huang J, Roberts AJ, Leschziner AE, Reck-Peterson SL.

Cell. 2012 Aug 31;150(5):975-86. doi: 10.1016/j.cell.2012.07.022.

24.

Lis1 is an initiation factor for dynein-driven organelle transport.

Egan MJ, Tan K, Reck-Peterson SL.

J Cell Biol. 2012 Jun 25;197(7):971-82. doi: 10.1083/jcb.201112101. Epub 2012 Jun 18.

25.

Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters.

Laan L, Pavin N, Husson J, Romet-Lemonne G, van Duijn M, López MP, Vale RD, Jülicher F, Reck-Peterson SL, Dogterom M.

Cell. 2012 Feb 3;148(3):502-14. doi: 10.1016/j.cell.2012.01.007.

26.

Dynein achieves processive motion using both stochastic and coordinated stepping.

Qiu W, Derr ND, Goodman BS, Villa E, Wu D, Shih W, Reck-Peterson SL.

Nat Struct Mol Biol. 2012 Jan 8;19(2):193-200. doi: 10.1038/nsmb.2205.

27.

Aspergillus myosin-V supports polarized growth in the absence of microtubule-based transport.

Zhang J, Tan K, Wu X, Chen G, Sun J, Reck-Peterson SL, Hammer JA 3rd, Xiang X.

PLoS One. 2011;6(12):e28575. doi: 10.1371/journal.pone.0028575. Epub 2011 Dec 14.

28.

Probing the force generation and stepping behavior of cytoplasmic Dynein.

Gennerich A, Reck-Peterson SL.

Methods Mol Biol. 2011;783:63-80. doi: 10.1007/978-1-61779-282-3_4.

PMID:
21909883
29.

Mechanisms underlying the dual-mode regulation of microtubule dynamics by Kip3/kinesin-8.

Su X, Qiu W, Gupta ML Jr, Pereira-Leal JB, Reck-Peterson SL, Pellman D.

Mol Cell. 2011 Sep 2;43(5):751-63. doi: 10.1016/j.molcel.2011.06.027.

30.

Imaging single molecules using total internal reflection fluorescence microscopy (TIRFM).

Reck-Peterson SL, Derr ND, Stuurman N.

Cold Spring Harb Protoc. 2010 Mar;2010(3):pdb.top73. doi: 10.1101/pdb.top73. Review.

PMID:
20194477
31.

Imaging single molecular motor motility with total internal reflection fluorescence microscopy (TIRFM).

Reck-Peterson SL, Derr ND, Stuurman N.

Cold Spring Harb Protoc. 2010 Mar;2010(3):pdb.prot5399. doi: 10.1101/pdb.prot5399.

PMID:
20194468
32.

Determining single-molecule intensity as a function of power density.

Reck-Peterson SL, Derr ND, Stuurman N.

Cold Spring Harb Protoc. 2010 Mar;2010(3):pdb.prot5398. doi: 10.1101/pdb.prot5398.

PMID:
20194467
33.

Regulation of the processivity and intracellular localization of Saccharomyces cerevisiae dynein by dynactin.

Kardon JR, Reck-Peterson SL, Vale RD.

Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5669-74. doi: 10.1073/pnas.0900976106. Epub 2009 Mar 17.

34.

Regulatory ATPase sites of cytoplasmic dynein affect processivity and force generation.

Cho C, Reck-Peterson SL, Vale RD.

J Biol Chem. 2008 Sep 19;283(38):25839-45. doi: 10.1074/jbc.M802951200. Epub 2008 Jul 23.

35.

Force-induced bidirectional stepping of cytoplasmic dynein.

Gennerich A, Carter AP, Reck-Peterson SL, Vale RD.

Cell. 2007 Nov 30;131(5):952-65.

36.

Single-molecule analysis of dynein processivity and stepping behavior.

Reck-Peterson SL, Yildiz A, Carter AP, Gennerich A, Zhang N, Vale RD.

Cell. 2006 Jul 28;126(2):335-48.

37.

Cell polarity protein Spa2P associates with proteins involved in actin function in Saccharomyces cerevisiae.

Shih JL, Reck-Peterson SL, Newitt R, Mooseker MS, Aebersold R, Herskowitz I.

Mol Biol Cell. 2005 Oct;16(10):4595-608. Epub 2005 Jul 19.

38.

The affinity of the dynein microtubule-binding domain is modulated by the conformation of its coiled-coil stalk.

Gibbons IR, Garbarino JE, Tan CE, Reck-Peterson SL, Vale RD, Carter AP.

J Biol Chem. 2005 Jun 24;280(25):23960-5. Epub 2005 Apr 11.

39.

Molecular dissection of the roles of nucleotide binding and hydrolysis in dynein's AAA domains in Saccharomyces cerevisiae.

Reck-Peterson SL, Vale RD.

Proc Natl Acad Sci U S A. 2004 Sep 28;101(39):14305. No abstract available.

41.

Nuclear actin and actin-related proteins in chromatin remodeling.

Olave IA, Reck-Peterson SL, Crabtree GR.

Annu Rev Biochem. 2002;71:755-81. Epub 2001 Nov 9. Review.

PMID:
12045110
42.

The yeast class V myosins, Myo2p and Myo4p, are nonprocessive actin-based motors.

Reck-Peterson SL, Tyska MJ, Novick PJ, Mooseker MS.

J Cell Biol. 2001 May 28;153(5):1121-6. Erratum in: J Cell Biol 2001 Jun 25;153(7):1521.

43.

Role of actin and Myo2p in polarized secretion and growth of Saccharomyces cerevisiae.

Karpova TS, Reck-Peterson SL, Elkind NB, Mooseker MS, Novick PJ, Cooper JA.

Mol Biol Cell. 2000 May;11(5):1727-37.

44.

Class V myosins.

Reck-Peterson SL, Provance DW Jr, Mooseker MS, Mercer JA.

Biochim Biophys Acta. 2000 Mar 17;1496(1):36-51. Review. No abstract available.

45.

The tail of a yeast class V myosin, myo2p, functions as a localization domain.

Reck-Peterson SL, Novick PJ, Mooseker MS.

Mol Biol Cell. 1999 Apr;10(4):1001-17.

Supplemental Content

Loading ...
Support Center