Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 20

1.

Integrative structure and functional anatomy of a nuclear pore complex.

Kim SJ, Fernandez-Martinez J, Nudelman I, Shi Y, Zhang W, Raveh B, Herricks T, Slaughter BD, Hogan JA, Upla P, Chemmama IE, Pellarin R, Echeverria I, Shivaraju M, Chaudhury AS, Wang J, Williams R, Unruh JR, Greenberg CH, Jacobs EY, Yu Z, de la Cruz MJ, Mironska R, Stokes DL, Aitchison JD, Jarrold MF, Gerton JL, Ludtke SJ, Akey CW, Chait BT, Sali A, Rout MP.

Nature. 2018 Mar 22;555(7697):475-482. doi: 10.1038/nature26003. Epub 2018 Mar 14.

2.

Structural basis for chemokine recognition by a G protein-coupled receptor and implications for receptor activation.

Ziarek JJ, Kleist AB, London N, Raveh B, Montpas N, Bonneterre J, St-Onge G, DiCosmo-Ponticello CJ, Koplinski CA, Roy I, Stephens B, Thelen S, Veldkamp CT, Coffman FD, Cohen MC, Dwinell MB, Thelen M, Peterson FC, Heveker N, Volkman BF.

Sci Signal. 2017 Mar 21;10(471). pii: eaah5756. doi: 10.1126/scisignal.aah5756.

3.

Simple rules for passive diffusion through the nuclear pore complex.

Timney BL, Raveh B, Mironska R, Trivedi JM, Kim SJ, Russel D, Wente SR, Sali A, Rout MP.

J Cell Biol. 2016 Oct 10;215(1):57-76. Epub 2016 Oct 3.

4.

Slide-and-exchange mechanism for rapid and selective transport through the nuclear pore complex.

Raveh B, Karp JM, Sparks S, Dutta K, Rout MP, Sali A, Cowburn D.

Proc Natl Acad Sci U S A. 2016 May 3;113(18):E2489-97. doi: 10.1073/pnas.1522663113. Epub 2016 Apr 18.

5.

A backdoor to the nucleus that runs in the family?

Raveh B.

Structure. 2014 Dec 2;22(12):1693-1694. doi: 10.1016/j.str.2014.11.005.

6.

Modeling of proteins and their assemblies with the Integrative Modeling Platform.

Webb B, Lasker K, Velázquez-Muriel J, Schneidman-Duhovny D, Pellarin R, Bonomi M, Greenberg C, Raveh B, Tjioe E, Russel D, Sali A.

Methods Mol Biol. 2014;1091:277-95. doi: 10.1007/978-1-62703-691-7_20.

PMID:
24203340
7.

Druggable protein-protein interactions--from hot spots to hot segments.

London N, Raveh B, Schueler-Furman O.

Curr Opin Chem Biol. 2013 Dec;17(6):952-9. doi: 10.1016/j.cbpa.2013.10.011. Epub 2013 Oct 31. Review.

PMID:
24183815
8.

Peptide docking and structure-based characterization of peptide binding: from knowledge to know-how.

London N, Raveh B, Schueler-Furman O.

Curr Opin Struct Biol. 2013 Dec;23(6):894-902. doi: 10.1016/j.sbi.2013.07.006. Epub 2013 Oct 15. Review.

PMID:
24138780
9.

Modeling peptide-protein interactions.

London N, Raveh B, Schueler-Furman O.

Methods Mol Biol. 2012;857:375-98. doi: 10.1007/978-1-61779-588-6_17.

PMID:
22323231
10.

Rosetta FlexPepDock web server--high resolution modeling of peptide-protein interactions.

London N, Raveh B, Cohen E, Fathi G, Schueler-Furman O.

Nucleic Acids Res. 2011 Jul;39(Web Server issue):W249-53. doi: 10.1093/nar/gkr431. Epub 2011 May 27.

11.

Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors.

Raveh B, London N, Zimmerman L, Schueler-Furman O.

PLoS One. 2011 Apr 29;6(4):e18934. doi: 10.1371/journal.pone.0018934.

12.

Allosteric regulation of glycogen synthase kinase 3β: a theoretical study.

Buch I, Fishelovitch D, London N, Raveh B, Wolfson HJ, Nussinov R.

Biochemistry. 2010 Dec 28;49(51):10890-901. doi: 10.1021/bi100822q. Epub 2010 Dec 3.

13.

Autophosphorylation activates Dictyostelium myosin II heavy chain kinase A by providing a ligand for an allosteric binding site in the alpha-kinase domain.

Crawley SW, Gharaei MS, Ye Q, Yang Y, Raveh B, London N, Schueler-Furman O, Jia Z, Côté GP.

J Biol Chem. 2011 Jan 28;286(4):2607-16. doi: 10.1074/jbc.M110.177014. Epub 2010 Nov 11.

14.

Can self-inhibitory peptides be derived from the interfaces of globular protein-protein interactions?

London N, Raveh B, Movshovitz-Attias D, Schueler-Furman O.

Proteins. 2010 Nov 15;78(15):3140-9. doi: 10.1002/prot.22785.

15.

Sub-angstrom modeling of complexes between flexible peptides and globular proteins.

Raveh B, London N, Schueler-Furman O.

Proteins. 2010 Jul;78(9):2029-40. doi: 10.1002/prot.22716.

PMID:
20455260
16.

Rapid sampling of molecular motions with prior information constraints.

Raveh B, Enosh A, Schueler-Furman O, Halperin D.

PLoS Comput Biol. 2009 Feb;5(2):e1000295. doi: 10.1371/journal.pcbi.1000295. Epub 2009 Feb 27.

17.

Generation, comparison, and merging of pathways between protein conformations: gating in K-channels.

Enosh A, Raveh B, Furman-Schueler O, Halperin D, Ben-Tal N.

Biophys J. 2008 Oct;95(8):3850-60. doi: 10.1529/biophysj.108.135285. Epub 2008 Jul 11.

18.

Prediction of transition metal-binding sites from apo protein structures.

Babor M, Gerzon S, Raveh B, Sobolev V, Edelman M.

Proteins. 2008 Jan 1;70(1):208-17.

PMID:
17657805
19.

Rediscovering secondary structures as network motifs--an unsupervised learning approach.

Raveh B, Rahat O, Basri R, Schreiber G.

Bioinformatics. 2007 Jan 15;23(2):e163-9.

PMID:
17237086
20.

Genetic analysis of a streptomycin-resistant Escherichia coli mutant temperature-sensitive for nonsense suppression.

Engelberg-Kulka H, Amiel A, Dekel L, Raveh B, Schoulaker-Schwarz R.

Mol Gen Genet. 1982;188(1):149-55.

PMID:
6757671

Supplemental Content

Support Center