Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 29

1.

Identifying small molecule probes of ENTPD5 through high throughput screening.

Durst MA, Ratia K, Lavie A.

PLoS One. 2019 Jun 26;14(6):e0210305. doi: 10.1371/journal.pone.0210305. eCollection 2019.

2.

Hit-to-Lead: Hit Validation and Assessment.

Hevener KE, Pesavento R, Ren J, Lee H, Ratia K, Johnson ME.

Methods Enzymol. 2018;610:265-309. doi: 10.1016/bs.mie.2018.09.022. Epub 2018 Oct 25.

PMID:
30390802
3.

A novel chemical inducer of Streptococcus quorum sensing acts by inhibiting the pheromone-degrading endopeptidase PepO.

Pérez Morales TG, Ratia K, Wang DS, Gogos A, Bloem L, Driver TG, Federle MJ.

J Biol Chem. 2018 Mar 23;293(12):4580. doi: 10.1074/jbc.AAC118.002674. No abstract available.

4.

2-Arylidene Hydrazinecarbodithioates as Potent, Selective Inhibitors of Cystathionine γ-Lyase (CSE).

Bhattacharjee A, Sinha A, Ratia K, Yin L, Delgado-Rivera L, Petukhov PA, Thatcher GRJ, Wardrop DJ.

ACS Med Chem Lett. 2017 Nov 21;8(12):1241-1245. doi: 10.1021/acsmedchemlett.7b00313. eCollection 2017 Dec 14.

5.

A novel chemical inducer of Streptococcus quorum sensing acts by inhibiting the pheromone-degrading endopeptidase PepO.

Pérez Morales TG, Ratia K, Wang DS, Gogos A, Bloem L, Driver TG, Federle MJ.

J Biol Chem. 2018 Jan 19;293(3):931-940. doi: 10.1074/jbc.M117.810994. Epub 2017 Dec 4. Erratum in: J Biol Chem. 2018 Mar 23;293(12 ):4580. Bloem, Laura [author added];.

6.

Time-Gated Detection of Cystathionine γ-Lyase Activity and Inhibition with a Selective, Luminogenic Hydrogen Sulfide Sensor.

Yao Y, Kong C, Yin L, Jain AD, Ratia K, Thatcher GR, Moore TW, Driver TG, Miller LW.

Chemistry. 2017 Jan 18;23(4):752-756. doi: 10.1002/chem.201604786. Epub 2016 Nov 25.

7.

Inhibition of Aβ42 oligomerization in yeast by a PICALM ortholog and certain FDA approved drugs.

Park SK, Ratia K, Ba M, Valencik M, Liebman SW.

Microb Cell. 2016 Jan 20;3(2):53-64. doi: 10.15698/mic2016.02.476.

8.

Identification of Quorum-Sensing Inhibitors Disrupting Signaling between Rgg and Short Hydrophobic Peptides in Streptococci.

Aggarwal C, Jimenez JC, Lee H, Chlipala GE, Ratia K, Federle MJ.

MBio. 2015 May 12;6(3):e00393-15. doi: 10.1128/mBio.00393-15.

9.

Structural Basis for the Ubiquitin-Linkage Specificity and deISGylating activity of SARS-CoV papain-like protease.

Ratia K, Kilianski A, Baez-Santos YM, Baker SC, Mesecar A.

PLoS Pathog. 2014 May 22;10(5):e1004113. doi: 10.1371/journal.ppat.1004113. eCollection 2014 May.

10.

Ligand screening using enzymatic assays.

Ratia K, Mehboob S, Lee H.

Methods Mol Biol. 2014;1140:291-304. doi: 10.1007/978-1-4939-0354-2_21.

PMID:
24590725
11.

Discovery of selective inhibitors of the Clostridium difficile dehydroquinate dehydratase.

Ratia K, Light SH, Antanasijevic A, Anderson WF, Caffrey M, Lavie A.

PLoS One. 2014 Feb 21;9(2):e89356. doi: 10.1371/journal.pone.0089356. eCollection 2014.

12.

Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and Ebola, Hendra, and Nipah viruses by using a novel high-throughput screening assay.

Elshabrawy HA, Fan J, Haddad CS, Ratia K, Broder CC, Caffrey M, Prabhakar BS.

J Virol. 2014 Apr;88(8):4353-65. doi: 10.1128/JVI.03050-13. Epub 2014 Feb 5.

13.

A comparative high-throughput screening protocol to identify entry inhibitors of enveloped viruses.

Wang J, Cheng H, Ratia K, Varhegyi E, Hendrickson WG, Li J, Rong L.

J Biomol Screen. 2014 Jan;19(1):100-7. doi: 10.1177/1087057113494405. Epub 2013 Jul 2.

14.

Severe acute respiratory syndrome coronavirus papain-like novel protease inhibitors: design, synthesis, protein-ligand X-ray structure and biological evaluation.

Ghosh AK, Takayama J, Rao KV, Ratia K, Chaudhuri R, Mulhearn DC, Lee H, Nichols DB, Baliji S, Baker SC, Johnson ME, Mesecar AD.

J Med Chem. 2010 Jul 8;53(13):4968-79. doi: 10.1021/jm1004489.

15.

Pleiotropic mechanisms facilitated by resveratrol and its metabolites.

Calamini B, Ratia K, Malkowski MG, Cuendet M, Pezzuto JM, Santarsiero BD, Mesecar AD.

Biochem J. 2010 Jul 15;429(2):273-82. doi: 10.1042/BJ20091857.

16.

Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases.

Clementz MA, Chen Z, Banach BS, Wang Y, Sun L, Ratia K, Baez-Santos YM, Wang J, Takayama J, Ghosh AK, Li K, Mesecar AD, Baker SC.

J Virol. 2010 May;84(9):4619-29. doi: 10.1128/JVI.02406-09. Epub 2010 Feb 24.

17.

Structure-based design, synthesis, and biological evaluation of a series of novel and reversible inhibitors for the severe acute respiratory syndrome-coronavirus papain-like protease.

Ghosh AK, Takayama J, Aubin Y, Ratia K, Chaudhuri R, Baez Y, Sleeman K, Coughlin M, Nichols DB, Mulhearn DC, Prabhakar BS, Baker SC, Johnson ME, Mesecar AD.

J Med Chem. 2009 Aug 27;52(16):5228-40. doi: 10.1021/jm900611t.

18.

Structure-based and random mutagenesis approaches increase the organophosphate-degrading activity of a phosphotriesterase homologue from Deinococcus radiodurans.

Hawwa R, Larsen SD, Ratia K, Mesecar AD.

J Mol Biol. 2009 Oct 16;393(1):36-57. doi: 10.1016/j.jmb.2009.06.083. Epub 2009 Jul 22.

PMID:
19631223
19.

Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling.

Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS.

J Virol. 2009 Jul;83(13):6689-705. doi: 10.1128/JVI.02220-08. Epub 2009 Apr 15.

20.

A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication.

Ratia K, Pegan S, Takayama J, Sleeman K, Coughlin M, Baliji S, Chaudhuri R, Fu W, Prabhakar BS, Johnson ME, Baker SC, Ghosh AK, Mesecar AD.

Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16119-24. doi: 10.1073/pnas.0805240105. Epub 2008 Oct 13.

21.

Viral destruction of cell surface receptors.

Mesecar AD, Ratia K.

Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):8807-8. doi: 10.1073/pnas.0804355105. Epub 2008 Jun 23. No abstract available.

22.

Structure-based design, synthesis, and biological evaluation of peptidomimetic SARS-CoV 3CLpro inhibitors.

Ghosh AK, Xi K, Grum-Tokars V, Xu X, Ratia K, Fu W, Houser KV, Baker SC, Johnson ME, Mesecar AD.

Bioorg Med Chem Lett. 2007 Nov 1;17(21):5876-80. Epub 2007 Aug 19.

23.

Evaluating the 3C-like protease activity of SARS-Coronavirus: recommendations for standardized assays for drug discovery.

Grum-Tokars V, Ratia K, Begaye A, Baker SC, Mesecar AD.

Virus Res. 2008 Apr;133(1):63-73. Epub 2007 Mar 29.

24.

Proteolytic processing and deubiquitinating activity of papain-like proteases of human coronavirus NL63.

Chen Z, Wang Y, Ratia K, Mesecar AD, Wilkinson KD, Baker SC.

J Virol. 2007 Jun;81(11):6007-18. Epub 2007 Mar 28.

25.

Deubiquitinating activity of the SARS-CoV papain-like protease.

Barretto N, Jukneliene D, Ratia K, Chen Z, Mesecar AD, Baker SC.

Adv Exp Med Biol. 2006;581:37-41. No abstract available.

PMID:
17037501
26.

Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme.

Ratia K, Saikatendu KS, Santarsiero BD, Barretto N, Baker SC, Stevens RC, Mesecar AD.

Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5717-22. Epub 2006 Mar 31.

27.

The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity.

Barretto N, Jukneliene D, Ratia K, Chen Z, Mesecar AD, Baker SC.

J Virol. 2005 Dec;79(24):15189-98.

28.

Design and synthesis of peptidomimetic severe acute respiratory syndrome chymotrypsin-like protease inhibitors.

Ghosh AK, Xi K, Ratia K, Santarsiero BD, Fu W, Harcourt BH, Rota PA, Baker SC, Johnson ME, Mesecar AD.

J Med Chem. 2005 Nov 3;48(22):6767-71.

PMID:
16250632
29.

Supplemental Content

Support Center