Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 46

1.

The Antarctic yeast Candida sake: Understanding cold metabolism impact on wine.

Ballester-Tomás L, Prieto JA, Gil JV, Baeza M, Randez-Gil F.

Int J Food Microbiol. 2017 Mar 20;245:59-65. doi: 10.1016/j.ijfoodmicro.2017.01.009. Epub 2017 Jan 22.

PMID:
28131961
2.

Inappropriate translation inhibition and P-body formation cause cold-sensitivity in tryptophan-auxotroph yeast mutants.

Ballester-Tomás L, Prieto JA, Alepuz P, González A, Garre E, Randez-Gil F.

Biochim Biophys Acta Mol Cell Res. 2017 Feb;1864(2):314-323. doi: 10.1016/j.bbamcr.2016.11.012. Epub 2016 Nov 15.

3.

Sng1 associates with Nce102 to regulate the yeast Pkh-Ypk signalling module in response to sphingolipid status.

García-Marqués S, Randez-Gil F, Dupont S, Garre E, Prieto JA.

Biochim Biophys Acta. 2016 Jun;1863(6 Pt A):1319-33. doi: 10.1016/j.bbamcr.2016.03.025. Epub 2016 Mar 28.

4.

Near-freezing effects on the proteome of industrial yeast strains of Saccharomyces cerevisiae.

Ballester-Tomás L, Pérez-Torrado R, Rodríguez-Vargas S, Prieto JA, Randez-Gil F.

J Biotechnol. 2016 Mar 10;221:70-7. doi: 10.1016/j.jbiotec.2016.01.029. Epub 2016 Jan 23.

PMID:
26812658
5.

Characterization of the S. cerevisiae inp51 mutant links phosphatidylinositol 4,5-bisphosphate levels with lipid content, membrane fluidity and cold growth.

Córcoles-Sáez I, Hernández ML, Martínez-Rivas JM, Prieto JA, Randez-Gil F.

Biochim Biophys Acta. 2016 Mar;1861(3):213-26. doi: 10.1016/j.bbalip.2015.12.014. Epub 2015 Dec 24.

PMID:
26724696
6.

Redox engineering by ectopic expression of glutamate dehydrogenase genes links NADPH availability and NADH oxidation with cold growth in Saccharomyces cerevisiae.

Ballester-Tomás L, Randez-Gil F, Pérez-Torrado R, Prieto JA.

Microb Cell Fact. 2015 Jul 9;14:100. doi: 10.1186/s12934-015-0289-2.

7.

Nuclear versus cytosolic activity of the yeast Hog1 MAP kinase in response to osmotic and tunicamycin-induced ER stress.

García-Marqués S, Randez-Gil F, Prieto JA.

FEBS Lett. 2015 Jul 22;589(16):2163-8. doi: 10.1016/j.febslet.2015.06.021. Epub 2015 Jun 30.

8.

Protein kinase Snf1 is involved in the proper regulation of the unfolded protein response in Saccharomyces cerevisiae.

Ferrer-Dalmau J, Randez-Gil F, Marquina M, Prieto JA, Casamayor A.

Biochem J. 2015 May 15;468(1):33-47. doi: 10.1042/BJ20140734.

PMID:
25730376
9.

Genetic and phenotypic characteristics of baker's yeast: relevance to baking.

Randez-Gil F, Córcoles-Sáez I, Prieto JA.

Annu Rev Food Sci Technol. 2013;4:191-214. doi: 10.1146/annurev-food-030212-182609. Review.

PMID:
23464571
10.

Low temperature highlights the functional role of the cell wall integrity pathway in the regulation of growth in Saccharomyces cerevisiae.

Córcoles-Sáez I, Ballester-Tomas L, de la Torre-Ruiz MA, Prieto JA, Randez-Gil F.

Biochem J. 2012 Sep 15;446(3):477-88. doi: 10.1042/BJ20120634.

PMID:
22747505
11.

Multicopy suppression screening of Saccharomyces cerevisiae Identifies the ubiquitination machinery as a main target for improving growth at low temperatures.

Hernández-López MJ, García-Marqués S, Randez-Gil F, Prieto JA.

Appl Environ Microbiol. 2011 Nov;77(21):7517-25. doi: 10.1128/AEM.00404-11. Epub 2011 Sep 9.

12.

Adaptive evolution of baker's yeast in a dough-like environment enhances freeze and salinity tolerance.

Aguilera J, Andreu P, Randez-Gil F, Prieto JA.

Microb Biotechnol. 2010 Mar;3(2):210-21. doi: 10.1111/j.1751-7915.2009.00136.x. Epub 2009 Jul 17.

13.

Isolation and characterization of the carbon catabolite-derepressing protein kinase Snf1 from the stress tolerant yeast Torulaspora delbrueckii.

Hernández-López MJ, Prieto JA, Randez-Gil F.

Yeast. 2010 Dec;27(12):1061-9. doi: 10.1002/yea.1810. Epub 2010 Sep 8.

14.

Global expression studies in baker's yeast reveal target genes for the improvement of industrially-relevant traits: the cases of CAF16 and ORC2.

Pérez-Torrado R, Panadero J, Hernández-López MJ, Prieto JA, Randez-Gil F.

Microb Cell Fact. 2010 Jul 13;9:56. doi: 10.1186/1475-2859-9-56.

15.

The activity of yeast Hog1 MAPK is required during endoplasmic reticulum stress induced by tunicamycin exposure.

Torres-Quiroz F, García-Marqués S, Coria R, Randez-Gil F, Prieto JA.

J Biol Chem. 2010 Jun 25;285(26):20088-96. doi: 10.1074/jbc.M109.063578. Epub 2010 Apr 29.

16.

Proteomic evolution of a wine yeast during the first hours of fermentation.

Salvadó Z, Chiva R, Rodríguez-Vargas S, Rández-Gil F, Mas A, Guillamón JM.

FEMS Yeast Res. 2008 Nov;8(7):1137-46. doi: 10.1111/j.1567-1364.2008.00389.x. Epub 2008 May 22.

17.

Overexpression of the calcineurin target CRZ1 provides freeze tolerance and enhances the fermentative capacity of baker's yeast.

Panadero J, Hernández-López MJ, Prieto JA, Randez-Gil F.

Appl Environ Microbiol. 2007 Aug;73(15):4824-31. Epub 2007 Jun 8.

18.

Characterization of a Torulaspora delbrueckii diploid strain with optimized performance in sweet and frozen sweet dough.

Hernández-López MJ, Pallotti C, Andreu P, Aguilera J, Prieto JA, Randez-Gil F.

Int J Food Microbiol. 2007 May 1;116(1):103-10. Epub 2007 Jan 12.

PMID:
17316858
19.

Cold response in Saccharomyces cerevisiae: new functions for old mechanisms.

Aguilera J, Randez-Gil F, Prieto JA.

FEMS Microbiol Rev. 2007 Apr;31(3):327-41. Epub 2007 Feb 9. Review.

20.

Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress.

Rodríguez-Vargas S, Sánchez-García A, Martínez-Rivas JM, Prieto JA, Randez-Gil F.

Appl Environ Microbiol. 2007 Jan;73(1):110-6. Epub 2006 Oct 27.

21.
22.

Regulation of salt tolerance by Torulaspora delbrueckii calcineurin target Crz1p.

Hernandez-Lopez MJ, Panadero J, Prieto JA, Randez-Gil F.

Eukaryot Cell. 2006 Mar;5(3):469-79.

23.

A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae.

Panadero J, Pallotti C, Rodríguez-Vargas S, Randez-Gil F, Prieto JA.

J Biol Chem. 2006 Feb 24;281(8):4638-45. Epub 2005 Dec 21.

24.
25.

Validation of a flour-free model dough system for throughput studies of baker's yeast.

Panadero J, Randez-Gil F, Prieto JA.

Appl Environ Microbiol. 2005 Mar;71(3):1142-7.

26.

Isolation and characterization of the LGT1 gene encoding a low-affinity glucose transporter from Torulaspora delbrueckii.

Alves-Araújo C, Hernandez-Lopez MJ, Prieto JA, Randez-Gil F, Sousa MJ.

Yeast. 2005 Feb;22(3):165-75.

27.

Cloning and characterization of the MAL11 gene encoding a high-affinity maltose transporter from Torulaspora delbrueckii.

Alves-Araújo C, Hernandez-Lopez MJ, Sousa MJ, Prieto JA, Randez-Gil F.

FEMS Yeast Res. 2004 Jan;4(4-5):467-76.

28.

A DNA region of Torulaspora delbrueckii containing the HIS3 gene: sequence, gene order and evolution.

Aller-Arranz E, Randez-Gil F, Barrio E, Prieto JA.

Yeast. 2003 Dec;20(16):1359-68.

29.
30.

Ura- host strains for genetic manipulation and heterologous expression of Torulaspora delbrueckii.

Hernandez-Lopez MJ, Blasco A, Prieto JA, Randez-Gil F.

Int J Food Microbiol. 2003 Sep 1;86(1-2):79-86.

PMID:
12892923
31.
32.

Gene expression analysis of cold and freeze stress in Baker's yeast.

Rodriguez-Vargas S, Estruch F, Randez-Gil F.

Appl Environ Microbiol. 2002 Jun;68(6):3024-30.

33.

Engineering of baker's yeasts, E. coli and Bacillus hosts for the production of Bacillus subtilis Lipase A.

Sánchez M, Prim N, Rández-Gil F, Pastor FI, Diaz P.

Biotechnol Bioeng. 2002 May 5;78(3):339-45.

PMID:
11920450
34.

Isolation, purification, and characterization of a cold-active lipase from Aspergillus nidulans.

Mayordomo I, Randez-Gil F, Prieto JA.

J Agric Food Chem. 2000 Jan;48(1):105-9.

PMID:
10637060
35.

Engineering baker's yeast: room for improvement.

Randez-Gil F, Sanz P, Prieto JA.

Trends Biotechnol. 1999 Jun;17(6):237-44.

PMID:
10354561
36.
37.

Hexokinase PII has a double cytosolic-nuclear localisation in Saccharomyces cerevisiae.

Randez-Gil F, Herrero P, Sanz P, Prieto JA, Moreno F.

FEBS Lett. 1998 Apr 3;425(3):475-8.

38.

Yeast Clk-1 homologue (Coq7/Cat5) is a mitochondrial protein in coenzyme Q synthesis.

Jonassen T, Proft M, Randez-Gil F, Schultz JR, Marbois BN, Entian KD, Clarke CF.

J Biol Chem. 1998 Feb 6;273(6):3351-7.

39.
40.

DOGR1 and DOGR2: two genes from Saccharomyces cerevisiae that confer 2-deoxyglucose resistance when overexpressed.

Randez-Gil F, Blasco A, Prieto JA, Sanz P.

Yeast. 1995 Oct;11(13):1233-40.

PMID:
8553694
41.
42.

Purification and characterization of a new alpha-amylase of intermediate thermal stability from the yeast Lipomyces kononenkoae.

Prieto JA, Bort BR, Martínez J, Randez-Gil F, Buesa C, Sanz P.

Biochem Cell Biol. 1995 Jan-Feb;73(1-2):41-9.

PMID:
7662314
43.

Nucleotide sequence of a putative peroxisomal protein from the yeast Lipomyces kononenkoae.

Randez-Gil F, Prieto JA, Sanz P.

FEMS Microbiol Lett. 1994 Sep 15;122(1-2):153-7.

PMID:
7958767
44.

Molecular characterization of a gene that confers 2-deoxyglucose resistance in yeast.

Sanz P, Randez-Gil F, Prieto JA.

Yeast. 1994 Sep;10(9):1195-202.

PMID:
7754708
45.

Expression of Aspergillus oryzae alpha-amylase gene in Saccharomyces cerevisiae.

Randez-Gil F, Sanz P.

FEMS Microbiol Lett. 1993 Aug 15;112(1):119-23.

PMID:
8405943
46.

Direct derivative spectrophotometric determination of nitrazepam and clonazepam in biological fluids.

Randez-Gil F, Daros JA, Salvador A, de la Guardia M.

J Pharm Biomed Anal. 1991;9(7):539-45.

PMID:
1817674

Supplemental Content

Loading ...
Support Center