Sort by
Items per page

Send to

Choose Destination

Search results

Items: 46


Variation in the biological half-life of methylmercury in humans: Methods, measurements and meaning.

Rand MD, Caito SW.

Biochim Biophys Acta Gen Subj. 2019 Feb 8. pii: S0304-4165(19)30029-7. doi: 10.1016/j.bbagen.2019.02.003. [Epub ahead of print] Review.


Associations of blood mercury and fatty acid concentrations with blood mitochondrial DNA copy number in the Seychelles Child Development Nutrition Study.

Xu Y, Wahlberg K, Love TM, Watson GE, Yeates AJ, Mulhern MS, McSorley EM, Strain JJ, Davidson PW, Shamlaye CF, Rand MD, Myers GJ, van Wijngaarden E, Broberg K.

Environ Int. 2019 Mar;124:278-283. doi: 10.1016/j.envint.2019.01.019. Epub 2019 Jan 17.


Maternal polymorphisms in glutathione-related genes are associated with maternal mercury concentrations and early child neurodevelopment in a population with a fish-rich diet.

Wahlberg K, Love TM, Pineda D, Engström K, Watson GE, Thurston SW, Yeates AJ, Mulhern MS, McSorley EM, Strain JJ, Smith TH, Davidson PW, Shamlaye CF, Myers GJ, Rand MD, van Wijngaarden E, Broberg K.

Environ Int. 2018 Jun;115:142-149. doi: 10.1016/j.envint.2018.03.015. Epub 2018 Mar 21.


Notch Target Gene E(spl)mδ Is a Mediator of Methylmercury-Induced Myotoxicity in Drosophila.

Prince LM, Rand MD.

Front Genet. 2018 Jan 15;8:233. doi: 10.3389/fgene.2017.00233. eCollection 2017.


Editor's Highlight: Variation in Methylmercury Metabolism and Elimination Status in Humans Following Fish Consumption.

Caito SW, Jackson BP, Punshon T, Scrimale T, Grier A, Gill SR, Love TM, Watson GE, van Wijngaarden E, Rand MD.

Toxicol Sci. 2018 Feb 1;161(2):443-453. doi: 10.1093/toxsci/kfx226.


Methylmercury exposure causes a persistent inhibition of myogenin expression and C2C12 myoblast differentiation.

Prince LM, Rand MD.

Toxicology. 2018 Jan 15;393:113-122. doi: 10.1016/j.tox.2017.11.002. Epub 2017 Nov 15.


CYP3A genes and the association between prenatal methylmercury exposure and neurodevelopment.

Llop S, Tran V, Ballester F, Barbone F, Sofianou-Katsoulis A, Sunyer J, Engström K, Alhamdow A, Love TM, Watson GE, Bustamante M, Murcia M, Iñiguez C, Shamlaye CF, Rosolen V, Mariuz M, Horvat M, Tratnik JS, Mazej D, van Wijngaarden E, Davidson PW, Myers GJ, Rand MD, Broberg K.

Environ Int. 2017 Aug;105:34-42. doi: 10.1016/j.envint.2017.04.013. Epub 2017 May 10.


Editor's Highlight: Glutathione S-Transferase Activity Moderates Methylmercury Toxicity During Development in Drosophila.

Vorojeikina D, Broberg K, Love TM, Davidson PW, van Wijngaarden E, Rand MD.

Toxicol Sci. 2017 May 1;157(1):211-221. doi: 10.1093/toxsci/kfx033.


Polymorphisms in ATP-binding cassette transporters associated with maternal methylmercury disposition and infant neurodevelopment in mother-infant pairs in the Seychelles Child Development Study.

Engström K, Love TM, Watson GE, Zareba G, Yeates A, Wahlberg K, Alhamdow A, Thurston SW, Mulhern M, McSorley EM, Strain JJ, Davidson PW, Shamlaye CF, Myers GJ, Rand MD, van Wijngaarden E, Broberg K.

Environ Int. 2016 Sep;94:224-229. doi: 10.1016/j.envint.2016.05.027. Epub 2016 Jun 2.


Methods for Individualized Determination of Methylmercury Elimination Rate and De-Methylation Status in Humans Following Fish Consumption.

Rand MD, Vorojeikina D, van Wijngaarden E, Jackson BP, Scrimale T, Zareba G, Love TM, Myers GJ, Watson GE.

Toxicol Sci. 2016 Feb;149(2):385-95. doi: 10.1093/toxsci/kfv241. Epub 2015 Nov 15.


Genome-wide association analysis of tolerance to methylmercury toxicity in Drosophila implicates myogenic and neuromuscular developmental pathways.

Montgomery SL, Vorojeikina D, Huang W, Mackay TF, Anholt RR, Rand MD.

PLoS One. 2014 Oct 31;9(10):e110375. doi: 10.1371/journal.pone.0110375. eCollection 2014.


Target organ specific activity of drosophila MRP (ABCC1) moderates developmental toxicity of methylmercury.

Prince L, Korbas M, Davidson P, Broberg K, Rand MD.

Toxicol Sci. 2014 Aug 1;140(2):425-35. doi: 10.1093/toxsci/kfu095. Epub 2014 May 25.


Developmental toxicity assays using the Drosophila model.

Rand MD, Montgomery SL, Prince L, Vorojeikina D.

Curr Protoc Toxicol. 2014 Feb 19;59:1.12.1-20. doi: 10.1002/0471140856.tx0112s59.


The Notch target E(spl)mδ is a muscle-specific gene involved in methylmercury toxicity in motor neuron development.

Engel GL, Rand MD.

Neurotoxicol Teratol. 2014 May-Jun;43:11-8. doi: 10.1016/ Epub 2014 Mar 13. Erratum in: Neurotoxicol Teratol. 2014 Nov-Dec;46:78.


Low level methylmercury enhances CNTF-evoked STAT3 signaling and glial differentiation in cultured cortical progenitor cells.

Jebbett NJ, Hamilton JW, Rand MD, Eckenstein F.

Neurotoxicology. 2013 Sep;38:91-100. doi: 10.1016/j.neuro.2013.06.008. Epub 2013 Jul 8.


Drosophila CYP6g1 and its human homolog CYP3A4 confer tolerance to methylmercury during development.

Rand MD, Lowe JA, Mahapatra CT.

Toxicology. 2012 Oct 9;300(1-2):75-82. doi: 10.1016/j.tox.2012.06.001. Epub 2012 Jun 12.


Methylmercury tolerance is associated with the humoral stress factor gene Turandot A.

Mahapatra CT, Rand MD.

Neurotoxicol Teratol. 2012 Jul;34(4):387-94. doi: 10.1016/ Epub 2012 Apr 24.


The effects of methylmercury on Notch signaling during embryonic neural development in Drosophila melanogaster.

Engel GL, Delwig A, Rand MD.

Toxicol In Vitro. 2012 Apr;26(3):485-92. doi: 10.1016/j.tiv.2011.12.014. Epub 2011 Dec 30.


Permeabilization of Drosophila embryos for introduction of small molecules.

Rand MD, Kearney AL, Dao J, Clason T.

Insect Biochem Mol Biol. 2010 Nov;40(11):792-804. doi: 10.1016/j.ibmb.2010.07.007. Epub 2010 Aug 19.


Identification of methylmercury tolerance gene candidates in Drosophila.

Mahapatra CT, Bond J, Rand DM, Rand MD.

Toxicol Sci. 2010 Jul;116(1):225-38. doi: 10.1093/toxsci/kfq097. Epub 2010 Apr 7.


Drosophotoxicology: the growing potential for Drosophila in neurotoxicology.

Rand MD.

Neurotoxicol Teratol. 2010 Jan-Feb;32(1):74-83. doi: 10.1016/ Epub 2009 Jun 24. Review.


Methylmercury disruption of embryonic neural development in Drosophila.

Rand MD, Dao JC, Clason TA.

Neurotoxicology. 2009 Sep;30(5):794-802. doi: 10.1016/j.neuro.2009.04.006. Epub 2009 May 4.


Kuz and TACE can activate Notch independent of ligand.

Delwig A, Rand MD.

Cell Mol Life Sci. 2008 Jul;65(14):2232-43. doi: 10.1007/s00018-008-8127-x.


Methylmercury activates enhancer-of-split and bearded complex genes independent of the notch receptor.

Rand MD, Bland CE, Bond J.

Toxicol Sci. 2008 Jul;104(1):163-76. doi: 10.1093/toxsci/kfn060. Epub 2008 Mar 25.


Delta expression in post-mitotic neurons identifies distinct subsets of adult-specific lineages in Drosophila.

Cornbrooks C, Bland C, Williams DW, Truman JW, Rand MD.

Dev Neurobiol. 2007 Jan;67(1):23-38.


Methylmercury induces activation of Notch signaling.

Bland C, Rand MD.

Neurotoxicology. 2006 Dec;27(6):982-91. Epub 2006 Apr 28.


Endocytosis-independent mechanisms of Delta ligand proteolysis.

Delwig A, Bland C, Beem-Miller M, Kimberly P, Rand MD.

Exp Cell Res. 2006 May 1;312(8):1345-60. Epub 2006 Feb 17.


Notch-induced proteolysis and nuclear localization of the Delta ligand.

Bland CE, Kimberly P, Rand MD.

J Biol Chem. 2003 Apr 18;278(16):13607-10. Epub 2003 Feb 18.


Down-regulation of Delta by proteolytic processing.

Mishra-Gorur K, Rand MD, Perez-Villamil B, Artavanis-Tsakonas S.

J Cell Biol. 2002 Oct 28;159(2):313-24. Epub 2002 Oct 28.


Calcium depletion dissociates and activates heterodimeric notch receptors.

Rand MD, Grimm LM, Artavanis-Tsakonas S, Patriub V, Blacklow SC, Sklar J, Aster JC.

Mol Cell Biol. 2000 Mar;20(5):1825-35.


Notch signaling: cell fate control and signal integration in development.

Artavanis-Tsakonas S, Rand MD, Lake RJ.

Science. 1999 Apr 30;284(5415):770-6. Review.


Processing of the notch ligand delta by the metalloprotease Kuzbanian.

Qi H, Rand MD, Wu X, Sestan N, Wang W, Rakic P, Xu T, Artavanis-Tsakonas S.

Science. 1999 Jan 1;283(5398):91-4.


Blood clotting in minimally altered whole blood.

Rand MD, Lock JB, van't Veer C, Gaffney DP, Mann KG.

Blood. 1996 Nov 1;88(9):3432-45.


Factor V turnover in a primate model.

Rand MD, Hanson SR, Mann KG.

Blood. 1995 Oct 1;86(7):2616-23.


Factor VNew Brunswick: Ala221-to-Val substitution results in reduced cofactor activity.

Murray JM, Rand MD, Egan JO, Murphy S, Kim HC, Mann KG.

Blood. 1995 Sep 1;86(5):1820-7.


Characterization of the molecular defect in factor VR506Q.

Kalafatis M, Bertina RM, Rand MD, Mann KG.

J Biol Chem. 1995 Feb 24;270(8):4053-7.


The mechanism of inactivation of human factor V and human factor Va by activated protein C.

Kalafatis M, Rand MD, Mann KG.

J Biol Chem. 1994 Dec 16;269(50):31869-80.


Membrane-dependent reactions in blood coagulation: role of the vitamin K-dependent enzyme complexes.

Kalafatis M, Swords NA, Rand MD, Mann KG.

Biochim Biophys Acta. 1994 Nov 29;1227(3):113-29. Review. No abstract available.


Platelet coagulation factor Va: the major secretory platelet phosphoprotein.

Rand MD, Kalafatis M, Mann KG.

Blood. 1994 Apr 15;83(8):2180-90.


Factor Va-membrane interaction is mediated by two regions located on the light chain of the cofactor.

Kalafatis M, Rand MD, Mann KG.

Biochemistry. 1994 Jan 18;33(2):486-93.


Phosphorylation of factor Va and factor VIIIa by activated platelets.

Kalafatis M, Rand MD, Jenny RJ, Ehrlich YH, Mann KG.

Blood. 1993 Feb 1;81(3):704-19.


Factor V.

Kalafatis M, Krishnaswamy S, Rand MD, Mann KG.

Methods Enzymol. 1993;222:224-36. No abstract available.


Our personnel department recruits nurses.


Am J Nurs. 1958 Jun;58(6):829-30. No abstract available.


Good nursing service is built upon; a sound program of nursing education.


Mod Hosp. 1954 May;82(5):77; passim. No abstract available.


Supplemental Content

Support Center