Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 14

1.

Dynamic Basis for Auranofin Drug Recognition by Thiol-Reductases of Human Pathogens and Intermediate Coordinated Adduct Formation with Catalytic Cysteine Residues.

Abhishek S, Sivadas S, Satish M, Deeksha W, Rajakumara E.

ACS Omega. 2019 May 31;4(5):9593-9602. doi: 10.1021/acsomega.9b00529. eCollection 2019 May 31.

2.

Biochemical and dynamic basis for combinatorial recognition of H3R2K9me2 by dual domains of UHRF1.

Abhishek S, Nivya MA, Nakarakanti NK, Deeksha W, Khosla S, Rajakumara E.

Biochimie. 2018 Jun;149:105-114. doi: 10.1016/j.biochi.2018.04.010. Epub 2018 Apr 12.

PMID:
29656054
3.

Computational characterization of substrate and product specificities, and functionality of S-adenosylmethionine binding pocket in histone lysine methyltransferases from Arabidopsis, rice and maize.

Satish M, Nivya MA, Abhishek S, Nakarakanti NK, Shivani D, Vani MV, Rajakumara E.

Proteins. 2018 Jan;86(1):21-34. doi: 10.1002/prot.25399. Epub 2017 Oct 24.

PMID:
29024026
4.

Mechanistic insights into the recognition of 5-methylcytosine oxidation derivatives by the SUVH5 SRA domain.

Rajakumara E, Nakarakanti NK, Nivya MA, Satish M.

Sci Rep. 2016 Feb 4;6:20161. doi: 10.1038/srep20161.

5.
6.

DNA bending facilitates the error-free DNA damage tolerance pathway and upholds genome integrity.

Gonzalez-Huici V, Szakal B, Urulangodi M, Psakhye I, Castellucci F, Menolfi D, Rajakumara E, Fumasoni M, Bermejo R, Jentsch S, Branzei D.

EMBO J. 2014 Feb 18;33(4):327-40. doi: 10.1002/embj.201387425. Epub 2014 Jan 28.

7.

PHD finger recognition of unmodified histone H3R2 links UHRF1 to regulation of euchromatic gene expression.

Rajakumara E, Wang Z, Ma H, Hu L, Chen H, Lin Y, Guo R, Wu F, Li H, Lan F, Shi YG, Xu Y, Patel DJ, Shi Y.

Mol Cell. 2011 Jul 22;43(2):275-284. doi: 10.1016/j.molcel.2011.07.006.

8.

A dual flip-out mechanism for 5mC recognition by the Arabidopsis SUVH5 SRA domain and its impact on DNA methylation and H3K9 dimethylation in vivo.

Rajakumara E, Law JA, Simanshu DK, Voigt P, Johnson LM, Reinberg D, Patel DJ, Jacobsen SE.

Genes Dev. 2011 Jan 15;25(2):137-52. doi: 10.1101/gad.1980311.

9.

Mechanistic and functional insights into fatty acid activation in Mycobacterium tuberculosis.

Arora P, Goyal A, Natarajan VT, Rajakumara E, Verma P, Gupta R, Yousuf M, Trivedi OA, Mohanty D, Tyagi A, Sankaranarayanan R, Gokhale RS.

Nat Chem Biol. 2009 Mar;5(3):166-73. doi: 10.1038/nchembio.143. Epub 2009 Feb 1.

10.

Structural basis for the remarkable stability of Bacillus subtilis lipase (Lip A) at low pH.

Rajakumara E, Acharya P, Ahmad S, Sankaranaryanan R, Rao NM.

Biochim Biophys Acta. 2008 Feb;1784(2):302-11. Epub 2007 Nov 12.

PMID:
18053819
11.

Crystallization and preliminary X-ray crystallographic studies of the N-terminal domain of FadD28, a fatty-acyl AMP ligase from Mycobacterium tuberculosis.

Goyal A, Yousuf M, Rajakumara E, Arora P, Gokhale RS, Sankaranarayanan R.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 Apr 1;62(Pt 4):350-2. Epub 2006 Mar 10.

12.

Crystal structure of low-molecular-weight protein tyrosine phosphatase from Mycobacterium tuberculosis at 1.9-A resolution.

Madhurantakam C, Rajakumara E, Mazumdar PA, Saha B, Mitra D, Wiker HG, Sankaranarayanan R, Das AK.

J Bacteriol. 2005 Mar;187(6):2175-81.

13.

Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase.

Acharya P, Rajakumara E, Sankaranarayanan R, Rao NM.

J Mol Biol. 2004 Aug 27;341(5):1271-81.

PMID:
15321721
14.

Crystallization and preliminary X-ray crystallographic investigations on several thermostable forms of a Bacillus subtilis lipase.

Rajakumara E, Acharya P, Ahmad S, Shanmugam VM, Rao NM, Sankaranarayanan R.

Acta Crystallogr D Biol Crystallogr. 2004 Jan;60(Pt 1):160-2. Epub 2003 Dec 18.

PMID:
14684916

Supplemental Content

Loading ...
Support Center