Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 143

1.

Improved reference genome of Aedes aegypti informs arbovirus vector control.

Matthews BJ, Dudchenko O, Kingan SB, Koren S, Antoshechkin I, Crawford JE, Glassford WJ, Herre M, Redmond SN, Rose NH, Weedall GD, Wu Y, Batra SS, Brito-Sierra CA, Buckingham SD, Campbell CL, Chan S, Cox E, Evans BR, Fansiri T, Filipović I, Fontaine A, Gloria-Soria A, Hall R, Joardar VS, Jones AK, Kay RGG, Kodali VK, Lee J, Lycett GJ, Mitchell SN, Muehling J, Murphy MR, Omer AD, Partridge FA, Peluso P, Aiden AP, Ramasamy V, Rašić G, Roy S, Saavedra-Rodriguez K, Sharan S, Sharma A, Smith ML, Turner J, Weakley AM, Zhao Z, Akbari OS, Black WC 4th, Cao H, Darby AC, Hill CA, Johnston JS, Murphy TD, Raikhel AS, Sattelle DB, Sharakhov IV, White BJ, Zhao L, Aiden EL, Mann RS, Lambrechts L, Powell JR, Sharakhova MV, Tu Z, Robertson HM, McBride CS, Hastie AR, Korlach J, Neafsey DE, Phillippy AM, Vosshall LB.

Nature. 2018 Nov;563(7732):501-507. doi: 10.1038/s41586-018-0692-z. Epub 2018 Nov 14.

2.

Serotonin signaling regulates insulin-like peptides for growth, reproduction, and metabolism in the disease vector Aedes aegypti.

Ling L, Raikhel AS.

Proc Natl Acad Sci U S A. 2018 Oct 16;115(42):E9822-E9831. doi: 10.1073/pnas.1808243115. Epub 2018 Oct 1.

3.

HR38, an ortholog of NR4A family nuclear receptors, mediates 20-hydroxyecdysone regulation of carbohydrate metabolism during mosquito reproduction.

Dong D, Zhang Y, Smykal V, Ling L, Raikhel AS.

Insect Biochem Mol Biol. 2018 May;96:19-26. doi: 10.1016/j.ibmb.2018.02.003. Epub 2018 Mar 9.

4.

The bacterium Wolbachia exploits host innate immunity to establish a symbiotic relationship with the dengue vector mosquito Aedes aegypti.

Pan X, Pike A, Joshi D, Bian G, McFadden MJ, Lu P, Liang X, Zhang F, Raikhel AS, Xi Z.

ISME J. 2018 Jan;12(1):277-288. doi: 10.1038/ismej.2017.174. Epub 2017 Nov 3.

5.

Regulatory Pathways Controlling Female Insect Reproduction.

Roy S, Saha TT, Zou Z, Raikhel AS.

Annu Rev Entomol. 2018 Jan 7;63:489-511. doi: 10.1146/annurev-ento-020117-043258. Epub 2017 Oct 20. Review.

PMID:
29058980
6.

MicroRNA-277 targets insulin-like peptides 7 and 8 to control lipid metabolism and reproduction in Aedes aegypti mosquitoes.

Ling L, Kokoza VA, Zhang C, Aksoy E, Raikhel AS.

Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):E8017-E8024. doi: 10.1073/pnas.1710970114. Epub 2017 Sep 5.

7.

MicroRNA-275 targets sarco/endoplasmic reticulum Ca2+ adenosine triphosphatase (SERCA) to control key functions in the mosquito gut.

Zhao B, Lucas KJ, Saha TT, Ha J, Ling L, Kokoza VA, Roy S, Raikhel AS.

PLoS Genet. 2017 Aug 7;13(8):e1006943. doi: 10.1371/journal.pgen.1006943. eCollection 2017 Aug.

8.

Activation of Aedes aegypti prophenoloxidase-3 and its role in the immune response against entomopathogenic fungi.

Wang Y, Jiang H, Cheng Y, An C, Chu Y, Raikhel AS, Zou Z.

Insect Mol Biol. 2017 Oct;26(5):552-563. doi: 10.1111/imb.12318. Epub 2017 May 27.

9.

Juvenile hormone and its receptor methoprene-tolerant promote ribosomal biogenesis and vitellogenesis in the Aedes aegypti mosquito.

Wang JL, Saha TT, Zhang Y, Zhang C, Raikhel AS.

J Biol Chem. 2017 Jun 16;292(24):10306-10315. doi: 10.1074/jbc.M116.761387. Epub 2017 Apr 26.

10.

Hormone and receptor interplay in the regulation of mosquito lipid metabolism.

Wang X, Hou Y, Saha TT, Pei G, Raikhel AS, Zou Z.

Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):E2709-E2718. doi: 10.1073/pnas.1619326114. Epub 2017 Mar 14.

11.

Transcriptome-wide microRNA and target dynamics in the fat body during the gonadotrophic cycle of Aedes aegypti.

Zhang X, Aksoy E, Girke T, Raikhel AS, Karginov FV.

Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E1895-E1903. doi: 10.1073/pnas.1701474114. Epub 2017 Feb 21.

12.

Determination of juvenile hormone titers by means of LC-MS/MS/MS and a juvenile hormone-responsive Gal4/UAS system in Aedes aegypti mosquitoes.

Zhao B, Hou Y, Wang J, Kokoza VA, Saha TT, Wang XL, Lin L, Zou Z, Raikhel AS.

Insect Biochem Mol Biol. 2016 Oct;77:69-77. doi: 10.1016/j.ibmb.2016.08.003. Epub 2016 Aug 12.

13.

microRNA-309 targets the Homeobox gene SIX4 and controls ovarian development in the mosquito Aedes aegypti.

Zhang Y, Zhao B, Roy S, Saha TT, Kokoza VA, Li M, Raikhel AS.

Proc Natl Acad Sci U S A. 2016 Aug 16;113(33):E4828-36. doi: 10.1073/pnas.1609792113. Epub 2016 Aug 3.

14.

The sex locus is tightly linked to factors conferring sex-specific lethal effects in the mosquito Aedes aegypti.

Krzywinska E, Kokoza V, Morris M, de la Casa-Esperon E, Raikhel AS, Krzywinski J.

Heredity (Edinb). 2016 Dec;117(6):408-416. doi: 10.1038/hdy.2016.57. Epub 2016 Aug 3.

15.

Hairy and Groucho mediate the action of juvenile hormone receptor Methoprene-tolerant in gene repression.

Saha TT, Shin SW, Dou W, Roy S, Zhao B, Hou Y, Wang XL, Zou Z, Girke T, Raikhel AS.

Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):E735-43. doi: 10.1073/pnas.1523838113. Epub 2016 Jan 7.

16.

Nutritional Control of Insect Reproduction.

Smykal V, Raikhel AS.

Curr Opin Insect Sci. 2015 Oct 1;11:31-38.

17.

Mosquito-specific microRNA-1890 targets the juvenile hormone-regulated serine protease JHA15 in the female mosquito gut.

Lucas KJ, Zhao B, Roy S, Gervaise AL, Raikhel AS.

RNA Biol. 2015;12(12):1383-90. doi: 10.1080/15476286.2015.1101525.

18.

Editorial overview: Molecular physiology: Toward unified comprehension of insect physiological systems.

Yamanaka N, Raikhel AS.

Curr Opin Insect Sci. 2015 Oct;11:vii-viii. doi: 10.1016/j.cois.2015.09.002. Epub 2015 Sep 12. No abstract available.

PMID:
28285766
19.

Regulation of Gene Expression Patterns in Mosquito Reproduction.

Roy S, Saha TT, Johnson L, Zhao B, Ha J, White KP, Girke T, Zou Z, Raikhel AS.

PLoS Genet. 2015 Aug 14;11(8):e1005450. doi: 10.1371/journal.pgen.1005450. eCollection 2015 Aug.

20.

Regulation of physiological processes by microRNAs in insects.

Lucas KJ, Zhao B, Liu S, Raikhel AS.

Curr Opin Insect Sci. 2015 Oct 1;11:1-7.

21.

Temporal Coordination of Carbohydrate Metabolism during Mosquito Reproduction.

Hou Y, Wang XL, Saha TT, Roy S, Zhao B, Raikhel AS, Zou Z.

PLoS Genet. 2015 Jul 9;11(7):e1005309. doi: 10.1371/journal.pgen.1005309. eCollection 2015 Jul.

22.

A Critical Role for CLSP2 in the Modulation of Antifungal Immune Response in Mosquitoes.

Wang YH, Hu Y, Xing LS, Jiang H, Hu SN, Raikhel AS, Zou Z.

PLoS Pathog. 2015 Jun 9;11(6):e1004931. doi: 10.1371/journal.ppat.1004931. eCollection 2015 Jun.

23.

Identification of plant compounds that disrupt the insect juvenile hormone receptor complex.

Lee SH, Oh HW, Fang Y, An SB, Park DS, Song HH, Oh SR, Kim SY, Kim S, Kim N, Raikhel AS, Je YH, Shin SW.

Proc Natl Acad Sci U S A. 2015 Feb 10;112(6):1733-8. doi: 10.1073/pnas.1424386112. Epub 2015 Jan 26.

24.

MicroRNA-8 targets the Wingless signaling pathway in the female mosquito fat body to regulate reproductive processes.

Lucas KJ, Roy S, Ha J, Gervaise AL, Kokoza VA, Raikhel AS.

Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1440-5. doi: 10.1073/pnas.1424408112. Epub 2015 Jan 20.

25.

Mosquito-specific microRNA-1174 targets serine hydroxymethyltransferase to control key functions in the gut.

Liu S, Lucas KJ, Roy S, Ha J, Raikhel AS.

Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14460-5. doi: 10.1073/pnas.1416278111. Epub 2014 Sep 22.

26.

Regulation of the gut-specific carboxypeptidase: a study using the binary Gal4/UAS system in the mosquito Aedes aegypti.

Zhao B, Kokoza VA, Saha TT, Wang S, Roy S, Raikhel AS.

Insect Biochem Mol Biol. 2014 Nov;54:1-10. doi: 10.1016/j.ibmb.2014.08.001. Epub 2014 Aug 21.

27.

Small RNAs: a new frontier in mosquito biology.

Lucas KJ, Myles KM, Raikhel AS.

Trends Parasitol. 2013 Jun;29(6):295-303. doi: 10.1016/j.pt.2013.04.003. Epub 2013 May 13. Review.

28.

Juvenile hormone and its receptor, methoprene-tolerant, control the dynamics of mosquito gene expression.

Zou Z, Saha TT, Roy S, Shin SW, Backman TW, Girke T, White KP, Raikhel AS.

Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):E2173-81. doi: 10.1073/pnas.1305293110. Epub 2013 Apr 30.

29.

Insect microRNAs: biogenesis, expression profiling and biological functions.

Lucas K, Raikhel AS.

Insect Biochem Mol Biol. 2013 Jan;43(1):24-38. doi: 10.1016/j.ibmb.2012.10.009. Epub 2012 Nov 16. Review.

30.

A critical role of the nuclear receptor HR3 in regulation of gonadotrophic cycles of the mosquito Aedes aegypti.

Mane-Padros D, Cruz J, Cheng A, Raikhel AS.

PLoS One. 2012;7(9):e45019. doi: 10.1371/journal.pone.0045019. Epub 2012 Sep 26.

31.

bHLH-PAS heterodimer of methoprene-tolerant and Cycle mediates circadian expression of juvenile hormone-induced mosquito genes.

Shin SW, Zou Z, Saha TT, Raikhel AS.

Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16576-81. doi: 10.1073/pnas.1214209109. Epub 2012 Sep 24.

32.

Nutritional and hormonal regulation of the TOR effector 4E-binding protein (4E-BP) in the mosquito Aedes aegypti.

Roy SG, Raikhel AS.

FASEB J. 2012 Mar;26(3):1334-42. doi: 10.1096/fj.11-189969. Epub 2011 Dec 9.

33.

Programmed autophagy in the fat body of Aedes aegypti is required to maintain egg maturation cycles.

Bryant B, Raikhel AS.

PLoS One. 2011;6(11):e25502. doi: 10.1371/journal.pone.0025502. Epub 2011 Nov 17.

34.

Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti.

Pan X, Zhou G, Wu J, Bian G, Lu P, Raikhel AS, Xi Z.

Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):E23-31. doi: 10.1073/pnas.1116932108. Epub 2011 Nov 28.

35.

Distinct roles of isoforms of the heme-liganded nuclear receptor E75, an insect ortholog of the vertebrate Rev-erb, in mosquito reproduction.

Cruz J, Mane-Padros D, Zou Z, Raikhel AS.

Mol Cell Endocrinol. 2012 Feb 26;349(2):262-71. doi: 10.1016/j.mce.2011.11.006. Epub 2011 Nov 17.

36.

A new factor in the Aedes aegypti immune response: CLSP2 modulates melanization.

Shin SW, Zou Z, Raikhel AS.

EMBO Rep. 2011 Sep 1;12(9):938-43. doi: 10.1038/embor.2011.130.

37.

Targeted gene expression in the transgenic Aedes aegypti using the binary Gal4-UAS system.

Kokoza VA, Raikhel AS.

Insect Biochem Mol Biol. 2011 Aug;41(8):637-44. doi: 10.1016/j.ibmb.2011.04.004. Epub 2011 Apr 27.

38.

AaCAT1 of the yellow fever mosquito, Aedes aegypti: a novel histidine-specific amino acid transporter from the SLC7 family.

Hansen IA, Boudko DY, Shiao SH, Voronov DA, Meleshkevitch EA, Drake LL, Aguirre SE, Fox JM, Attardo GM, Raikhel AS.

J Biol Chem. 2011 Mar 25;286(12):10803-13. doi: 10.1074/jbc.M110.179739. Epub 2011 Jan 24.

39.

microRNA miR-275 is indispensable for blood digestion and egg development in the mosquito Aedes aegypti.

Bryant B, Macdonald W, Raikhel AS.

Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22391-8. doi: 10.1073/pnas.1016230107. Epub 2010 Nov 29.

40.

The small GTPase Rheb is a key component linking amino acid signaling and TOR in the nutritional pathway that controls mosquito egg development.

Roy SG, Raikhel AS.

Insect Biochem Mol Biol. 2011 Jan;41(1):62-9. doi: 10.1016/j.ibmb.2010.10.001. Epub 2010 Oct 28.

41.

The RNA-Seq approach to studying the expression of mosquito mitochondrial genes.

Neira-Oviedo M, Tsyganov-Bodounov A, Lycett GJ, Kokoza V, Raikhel AS, Krzywinski J.

Insect Mol Biol. 2011 Apr;20(2):141-52. doi: 10.1111/j.1365-2583.2010.01053.x. Epub 2010 Oct 19.

PMID:
20958808
42.

Pathogenomics of Culex quinquefasciatus and meta-analysis of infection responses to diverse pathogens.

Bartholomay LC, Waterhouse RM, Mayhew GF, Campbell CL, Michel K, Zou Z, Ramirez JL, Das S, Alvarez K, Arensburger P, Bryant B, Chapman SB, Dong Y, Erickson SM, Karunaratne SH, Kokoza V, Kodira CD, Pignatelli P, Shin SW, Vanlandingham DL, Atkinson PW, Birren B, Christophides GK, Clem RJ, Hemingway J, Higgs S, Megy K, Ranson H, Zdobnov EM, Raikhel AS, Christensen BM, Dimopoulos G, Muskavitch MA.

Science. 2010 Oct 1;330(6000):88-90. doi: 10.1126/science.1193162.

43.

Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics.

Arensburger P, Megy K, Waterhouse RM, Abrudan J, Amedeo P, Antelo B, Bartholomay L, Bidwell S, Caler E, Camara F, Campbell CL, Campbell KS, Casola C, Castro MT, Chandramouliswaran I, Chapman SB, Christley S, Costas J, Eisenstadt E, Feschotte C, Fraser-Liggett C, Guigo R, Haas B, Hammond M, Hansson BS, Hemingway J, Hill SR, Howarth C, Ignell R, Kennedy RC, Kodira CD, Lobo NF, Mao C, Mayhew G, Michel K, Mori A, Liu N, Naveira H, Nene V, Nguyen N, Pearson MD, Pritham EJ, Puiu D, Qi Y, Ranson H, Ribeiro JM, Roberston HM, Severson DW, Shumway M, Stanke M, Strausberg RL, Sun C, Sutton G, Tu ZJ, Tubio JM, Unger MF, Vanlandingham DL, Vilella AJ, White O, White JR, Wondji CS, Wortman J, Zdobnov EM, Birren B, Christensen BM, Collins FH, Cornel A, Dimopoulos G, Hannick LI, Higgs S, Lanzaro GC, Lawson D, Lee NH, Muskavitch MA, Raikhel AS, Atkinson PW.

Science. 2010 Oct 1;330(6000):86-8. doi: 10.1126/science.1191864.

44.

Blocking of Plasmodium transmission by cooperative action of Cecropin A and Defensin A in transgenic Aedes aegypti mosquitoes.

Kokoza V, Ahmed A, Woon Shin S, Okafor N, Zou Z, Raikhel AS.

Proc Natl Acad Sci U S A. 2010 May 4;107(18):8111-6. doi: 10.1073/pnas.1003056107. Epub 2010 Apr 12.

45.

Distinct melanization pathways in the mosquito Aedes aegypti.

Zou Z, Shin SW, Alvarez KS, Kokoza V, Raikhel AS.

Immunity. 2010 Jan 29;32(1):41-53. doi: 10.1016/j.immuni.2009.11.011.

46.

The role of NF-kappaB factor REL2 in the Aedes aegypti immune response.

Antonova Y, Alvarez KS, Kim YJ, Kokoza V, Raikhel AS.

Insect Biochem Mol Biol. 2009 Apr;39(4):303-14. doi: 10.1016/j.ibmb.2009.01.007. Epub 2009 Feb 7.

47.

Nuclear receptors in the mosquito Aedes aegypti: annotation, hormonal regulation and expression profiling.

Cruz J, Sieglaff DH, Arensburger P, Atkinson PW, Raikhel AS.

FEBS J. 2009 Mar;276(5):1233-54. doi: 10.1111/j.1742-4658.2008.06860.x.

48.

Mosquito RUNX4 in the immune regulation of PPO gene expression and its effect on avian malaria parasite infection.

Zou Z, Shin SW, Alvarez KS, Bian G, Kokoza V, Raikhel AS.

Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18454-9. doi: 10.1073/pnas.0804658105. Epub 2008 Nov 14.

49.

Internalization of LDL-receptor superfamily yolk-protein receptors during mosquito oogenesis involves transcriptional regulation of PTB-domain adaptors.

Mishra SK, Jha A, Steinhauser AL, Kokoza VA, Washabaugh CH, Raikhel AS, Foster WA, Traub LM.

J Cell Sci. 2008 Apr 15;121(Pt 8):1264-74. doi: 10.1242/jcs.025833.

50.

Characterization of a juvenile hormone-regulated chymotrypsin-like serine protease gene in Aedes aegypti mosquito.

Bian G, Raikhel AS, Zhu J.

Insect Biochem Mol Biol. 2008 Feb;38(2):190-200. doi: 10.1016/j.ibmb.2007.10.008. Epub 2007 Nov 17.

Supplemental Content

Loading ...
Support Center