Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 266

1.

Structural mapping of oligomeric intermediates in an amyloid assembly pathway.

Karamanos TK, Jackson MP, Calabrese AN, Goodchild SC, Cawood EE, Thompson GS, Kalverda AP, Hewitt EW, Radford SE.

Elife. 2019 Sep 25;8. pii: e46574. doi: 10.7554/eLife.46574.

2.

Molecular insights into the surface-catalyzed secondary nucleation of amyloid-β40 (Aβ40) by the peptide fragment Aβ16-22.

Bunce SJ, Wang Y, Stewart KL, Ashcroft AE, Radford SE, Hall CK, Wilson AJ.

Sci Adv. 2019 Jun 21;5(6):eaav8216. doi: 10.1126/sciadv.aav8216. eCollection 2019 Jun.

3.

Extracellular matrix components modulate different stages in β2-microglobulin amyloid formation.

Benseny-Cases N, Karamanos TK, Hoop CL, Baum J, Radford SE.

J Biol Chem. 2019 Jun 14;294(24):9392-9401. doi: 10.1074/jbc.RA119.008300. Epub 2019 Apr 17.

4.

Dual Role of Ribosome-Binding Domain of NAC as a Potent Suppressor of Protein Aggregation and Aging-Related Proteinopathies.

Shen K, Gamerdinger M, Chan R, Gense K, Martin EM, Sachs N, Knight PD, Schlömer R, Calabrese AN, Stewart KL, Leiendecker L, Baghel A, Radford SE, Frydman J, Deuerling E.

Mol Cell. 2019 May 16;74(4):729-741.e7. doi: 10.1016/j.molcel.2019.03.012. Epub 2019 Apr 11.

5.

The Role of SurA PPIase Domains in Preventing Aggregation of the Outer-Membrane Proteins tOmpA and OmpT.

Humes JR, Schiffrin B, Calabrese AN, Higgins AJ, Westhead DR, Brockwell DJ, Radford SE.

J Mol Biol. 2019 Mar 15;431(6):1267-1283. doi: 10.1016/j.jmb.2019.01.032. Epub 2019 Feb 1.

PMID:
30716334
6.

Thermodynamic phase diagram of amyloid-β (16-22) peptide.

Wang Y, Bunce SJ, Radford SE, Wilson AJ, Auer S, Hall CK.

Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):2091-2096. doi: 10.1073/pnas.1819592116. Epub 2019 Jan 23.

7.

Rapid Mapping of Protein Interactions Using Tag-Transfer Photocrosslinkers.

Horne JE, Walko M, Calabrese AN, Levenstein MA, Brockwell DJ, Kapur N, Wilson AJ, Radford SE.

Angew Chem Int Ed Engl. 2018 Dec 17;57(51):16688-16692. doi: 10.1002/anie.201809149. Epub 2018 Nov 21.

8.

The structure of a β2-microglobulin fibril suggests a molecular basis for its amyloid polymorphism.

Iadanza MG, Silvers R, Boardman J, Smith HI, Karamanos TK, Debelouchina GT, Su Y, Griffin RG, Ranson NA, Radford SE.

Nat Commun. 2018 Oct 30;9(1):4517. doi: 10.1038/s41467-018-06761-6.

9.

Orientation of a Diagnostic Ligand Bound to Macroscopically Aligned Amyloid-β Fibrils Determined by Solid-State NMR.

Townsend D, Hughes E, Stewart KL, Griffin JM, Radford SE, Middleton DA.

J Phys Chem Lett. 2018 Nov 15;9(22):6611-6615. doi: 10.1021/acs.jpclett.8b02448. Epub 2018 Nov 6.

PMID:
30354142
10.

Comparing Hydrogen Deuterium Exchange and Fast Photochemical Oxidation of Proteins: a Structural Characterisation of Wild-Type and ΔN6 β2-Microglobulin.

Cornwell O, Radford SE, Ashcroft AE, Ault JR.

J Am Soc Mass Spectrom. 2018 Dec;29(12):2413-2426. doi: 10.1007/s13361-018-2067-y. Epub 2018 Sep 28.

11.

A new era for understanding amyloid structures and disease.

Iadanza MG, Jackson MP, Hewitt EW, Ranson NA, Radford SE.

Nat Rev Mol Cell Biol. 2018 Dec;19(12):755-773. doi: 10.1038/s41580-018-0060-8. Review.

12.

Dynamic action of the Sec machinery during initiation, protein translocation and termination.

Fessl T, Watkins D, Oatley P, Allen WJ, Corey RA, Horne J, Baldwin SA, Radford SE, Collinson I, Tuma R.

Elife. 2018 Jun 7;7. pii: e35112. doi: 10.7554/eLife.35112.

13.

Epigallocatechin-3-gallate remodels apolipoprotein A-I amyloid fibrils into soluble oligomers in the presence of heparin.

Townsend D, Hughes E, Akien G, Stewart KL, Radford SE, Rochester D, Middleton DA.

J Biol Chem. 2018 Aug 17;293(33):12877-12893. doi: 10.1074/jbc.RA118.002038. Epub 2018 May 31.

14.

The role of β-barrels 1 and 2 in the enzymatic activity of factor XIII A-subunit.

Hethershaw EL, Adamson PJ, Smith KA, Goldsberry WN, Pease RJ, Radford SE, Grant PJ, Ariëns RAS, Maurer MC, Philippou H.

J Thromb Haemost. 2018 Jul;16(7):1391-1401. doi: 10.1111/jth.14128. Epub 2018 May 27.

15.

Conformational flexibility within the nascent polypeptide-associated complex enables its interactions with structurally diverse client proteins.

Martin EM, Jackson MP, Gamerdinger M, Gense K, Karamonos TK, Humes JR, Deuerling E, Ashcroft AE, Radford SE.

J Biol Chem. 2018 Jun 1;293(22):8554-8568. doi: 10.1074/jbc.RA117.001568. Epub 2018 Apr 12.

16.

Mass spectrometry-enabled structural biology of membrane proteins.

Calabrese AN, Radford SE.

Methods. 2018 Sep 1;147:187-205. doi: 10.1016/j.ymeth.2018.02.020. Epub 2018 Mar 3. Review.

17.

A peptide-display protein scaffold to facilitate single molecule force studies of aggregation-prone peptides.

Doherty CPA, Young LM, Karamanos TK, Smith HI, Jackson MP, Radford SE, Brockwell DJ.

Protein Sci. 2018 Jul;27(7):1205-1217. doi: 10.1002/pro.3386. Epub 2018 Mar 10.

18.

Identification of a novel site of interaction between ataxin-3 and the amyloid aggregation inhibitor polyglutamine binding peptide 1.

Knight PD, Karamanos TK, Radford SE, Ashcroft AE.

Eur J Mass Spectrom (Chichester). 2018 Feb;24(1):129-140. doi: 10.1177/1469066717729298. Epub 2017 Aug 29.

19.

Using extensional flow to reveal diverse aggregation landscapes for three IgG1 molecules.

Willis LF, Kumar A, Dobson J, Bond NJ, Lowe D, Turner R, Radford SE, Kapur N, Brockwell DJ.

Biotechnol Bioeng. 2018 May;115(5):1216-1225. doi: 10.1002/bit.26543. Epub 2018 Feb 4.

20.

Outer membrane protein folding from an energy landscape perspective.

Schiffrin B, Brockwell DJ, Radford SE.

BMC Biol. 2017 Dec 21;15(1):123. doi: 10.1186/s12915-017-0464-5. Review.

21.

Understanding co-polymerization in amyloid formation by direct observation of mixed oligomers.

Young LM, Tu LH, Raleigh DP, Ashcroft AE, Radford SE.

Chem Sci. 2017 Jul 1;8(7):5030-5040. doi: 10.1039/c7sc00620a. Epub 2017 May 9.

22.

Effects of Periplasmic Chaperones and Membrane Thickness on BamA-Catalyzed Outer-Membrane Protein Folding.

Schiffrin B, Calabrese AN, Higgins AJ, Humes JR, Ashcroft AE, Kalli AC, Brockwell DJ, Radford SE.

J Mol Biol. 2017 Nov 24;429(23):3776-3792. doi: 10.1016/j.jmb.2017.09.008. Epub 2017 Sep 15.

23.

Topological Dissection of the Membrane Transport Protein Mhp1 Derived from Cysteine Accessibility and Mass Spectrometry.

Calabrese AN, Jackson SM, Jones LN, Beckstein O, Heinkel F, Gsponer J, Sharples D, Sans M, Kokkinidou M, Pearson AR, Radford SE, Ashcroft AE, Henderson PJF.

Anal Chem. 2017 Sep 5;89(17):8844-8852. doi: 10.1021/acs.analchem.7b01310. Epub 2017 Aug 9.

24.

Molecular Origins of the Compatibility between Glycosaminoglycans and Aβ40 Amyloid Fibrils.

Stewart KL, Hughes E, Yates EA, Middleton DA, Radford SE.

J Mol Biol. 2017 Aug 4;429(16):2449-2462. doi: 10.1016/j.jmb.2017.07.003. Epub 2017 Jul 10.

25.

Small molecule probes of protein aggregation.

Young LM, Ashcroft AE, Radford SE.

Curr Opin Chem Biol. 2017 Aug;39:90-99. doi: 10.1016/j.cbpa.2017.06.008. Epub 2017 Jun 22. Review.

26.

Amyloid plaques beyond Aβ: a survey of the diverse modulators of amyloid aggregation.

Stewart KL, Radford SE.

Biophys Rev. 2017 Aug;9(4):405-419. doi: 10.1007/s12551-017-0271-9. Epub 2017 Jun 19. Review.

27.

Investigating the Structural Compaction of Biomolecules Upon Transition to the Gas-Phase Using ESI-TWIMS-MS.

Devine PWA, Fisher HC, Calabrese AN, Whelan F, Higazi DR, Potts JR, Lowe DC, Radford SE, Ashcroft AE.

J Am Soc Mass Spectrom. 2017 Sep;28(9):1855-1862. doi: 10.1007/s13361-017-1689-9. Epub 2017 May 8.

28.

Inducing protein aggregation by extensional flow.

Dobson J, Kumar A, Willis LF, Tuma R, Higazi DR, Turner R, Lowe DC, Ashcroft AE, Radford SE, Kapur N, Brockwell DJ.

Proc Natl Acad Sci U S A. 2017 May 2;114(18):4673-4678. doi: 10.1073/pnas.1702724114. Epub 2017 Apr 17.

29.

Engineering the surface properties of a human monoclonal antibody prevents self-association and rapid clearance in vivo.

Dobson CL, Devine PW, Phillips JJ, Higazi DR, Lloyd C, Popovic B, Arnold J, Buchanan A, Lewis A, Goodman J, van der Walle CF, Thornton P, Vinall L, Lowne D, Aagaard A, Olsson LL, Ridderstad Wollberg A, Welsh F, Karamanos TK, Pashley CL, Iadanza MG, Ranson NA, Ashcroft AE, Kippen AD, Vaughan TJ, Radford SE, Lowe DC.

Sci Rep. 2016 Dec 20;6:38644. doi: 10.1038/srep38644.

30.

Lateral opening in the intact β-barrel assembly machinery captured by cryo-EM.

Iadanza MG, Higgins AJ, Schiffrin B, Calabrese AN, Brockwell DJ, Ashcroft AE, Radford SE, Ranson NA.

Nat Commun. 2016 Sep 30;7:12865. doi: 10.1038/ncomms12865.

31.

Skp is a multivalent chaperone of outer-membrane proteins.

Schiffrin B, Calabrese AN, Devine PWA, Harris SA, Ashcroft AE, Brockwell DJ, Radford SE.

Nat Struct Mol Biol. 2016 Sep;23(9):786-793. doi: 10.1038/nsmb.3266. Epub 2016 Jul 25.

32.

FPOP-LC-MS/MS Suggests Differences in Interaction Sites of Amphipols and Detergents with Outer Membrane Proteins.

Watkinson TG, Calabrese AN, Ault JR, Radford SE, Ashcroft AE.

J Am Soc Mass Spectrom. 2017 Jan;28(1):50-55. doi: 10.1007/s13361-016-1421-1. Epub 2016 Jun 24.

33.

A growing toolbox of techniques for studying β-barrel outer membrane protein folding and biogenesis.

Horne JE, Radford SE.

Biochem Soc Trans. 2016 Jun 15;44(3):802-9. doi: 10.1042/BST20160020. Review.

34.

Atomic Details of the Interactions of Glycosaminoglycans with Amyloid-β Fibrils.

Stewart KL, Hughes E, Yates EA, Akien GR, Huang TY, Lima MA, Rudd TR, Guerrini M, Hung SC, Radford SE, Middleton DA.

J Am Chem Soc. 2016 Jul 13;138(27):8328-31. doi: 10.1021/jacs.6b02816. Epub 2016 Jul 5.

35.

Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation.

Allen WJ, Corey RA, Oatley P, Sessions RB, Baldwin SA, Radford SE, Tuma R, Collinson I.

Elife. 2016 May 16;5. pii: e15598. doi: 10.7554/eLife.15598.

36.

A Population Shift between Sparsely Populated Folding Intermediates Determines Amyloidogenicity.

Karamanos TK, Pashley CL, Kalverda AP, Thompson GS, Mayzel M, Orekhov VY, Radford SE.

J Am Chem Soc. 2016 May 18;138(19):6271-80. doi: 10.1021/jacs.6b02464. Epub 2016 May 6.

37.

Systematic analysis of the use of amphipathic polymers for studies of outer membrane proteins using mass spectrometry.

Watkinson TG, Calabrese AN, Giusti F, Zoonens M, Radford SE, Ashcroft AE.

Int J Mass Spectrom. 2015 Nov 30;391:54-61.

38.

MpUL-multi: Software for Calculation of Amyloid Fibril Mass per Unit Length from TB-TEM Images.

Iadanza MG, Jackson MP, Radford SE, Ranson NA.

Sci Rep. 2016 Feb 12;6:21078. doi: 10.1038/srep21078.

39.

Comparison of the aggregation of homologous β2-microglobulin variants reveals protein solubility as a key determinant of amyloid formation.

Pashley CL, Hewitt EW, Radford SE.

J Mol Biol. 2016 Feb 13;428(3):631-643. doi: 10.1016/j.jmb.2016.01.009. Epub 2016 Jan 15.

40.

An in vivo platform for identifying inhibitors of protein aggregation.

Saunders JC, Young LM, Mahood RA, Jackson MP, Revill CH, Foster RJ, Smith DA, Ashcroft AE, Brockwell DJ, Radford SE.

Nat Chem Biol. 2016 Feb;12(2):94-101. doi: 10.1038/nchembio.1988. Epub 2015 Dec 14.

41.

Substrate protein folds while it is bound to the ATP-independent chaperone Spy.

Stull F, Koldewey P, Humes JR, Radford SE, Bardwell JCA.

Nat Struct Mol Biol. 2016 Jan;23(1):53-58. doi: 10.1038/nsmb.3133. Epub 2015 Nov 30.

42.

Amyloid Fibres: Inert End-Stage Aggregates or Key Players in Disease?

Tipping KW, van Oosten-Hawle P, Hewitt EW, Radford SE.

Trends Biochem Sci. 2015 Dec;40(12):719-727. doi: 10.1016/j.tibs.2015.10.002. Epub 2015 Nov 2. Review.

43.

Characterization of Amyloid Oligomers by Electrospray Ionization-Ion Mobility Spectrometry-Mass Spectrometry (ESI-IMS-MS).

Scarff CA, Ashcroft AE, Radford SE.

Methods Mol Biol. 2016;1345:115-32. doi: 10.1007/978-1-4939-2978-8_8.

44.

Mechanisms of amyloid formation revealed by solution NMR.

Karamanos TK, Kalverda AP, Thompson GS, Radford SE.

Prog Nucl Magn Reson Spectrosc. 2015 Aug;88-89:86-104. doi: 10.1016/j.pnmrs.2015.05.002. Epub 2015 May 27. Review.

45.

Insights into the consequences of co-polymerisation in the early stages of IAPP and Aβ peptide assembly from mass spectrometry.

Young LM, Mahood RA, Saunders JC, Tu LH, Raleigh DP, Radford SE, Ashcroft AE.

Analyst. 2015 Oct 21;140(20):6990-9. doi: 10.1039/c5an00865d.

46.

ESI-IMS-MS: A method for rapid analysis of protein aggregation and its inhibition by small molecules.

Young LM, Saunders JC, Mahood RA, Revill CH, Foster RJ, Ashcroft AE, Radford SE.

Methods. 2016 Feb 15;95:62-9. doi: 10.1016/j.ymeth.2015.05.017. Epub 2015 May 22.

47.

A comparison of the folding characteristics of free and ribosome-tethered polypeptide chains using limited proteolysis and mass spectrometry.

Rajabi K, Reuther J, Deuerling E, Radford SE, Ashcroft AE.

Protein Sci. 2015 Aug;24(8):1282-91. doi: 10.1002/pro.2702. Epub 2015 Jun 11.

48.

pH-induced molecular shedding drives the formation of amyloid fibril-derived oligomers.

Tipping KW, Karamanos TK, Jakhria T, Iadanza MG, Goodchild SC, Tuma R, Ranson NA, Hewitt EW, Radford SE.

Proc Natl Acad Sci U S A. 2015 May 5;112(18):5691-6. doi: 10.1073/pnas.1423174112. Epub 2015 Apr 20.

49.

Mass spectrometric methods to analyze the structural organization of macromolecular complexes.

Rajabi K, Ashcroft AE, Radford SE.

Methods. 2015 Nov 1;89:13-21. doi: 10.1016/j.ymeth.2015.03.004. Epub 2015 Mar 14. Review.

50.

Using hydroxyl radical footprinting to explore the free energy landscape of protein folding.

Calabrese AN, Ault JR, Radford SE, Ashcroft AE.

Methods. 2015 Nov 1;89:38-44. doi: 10.1016/j.ymeth.2015.02.018. Epub 2015 Mar 5.

Supplemental Content

Loading ...
Support Center