Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 166

1.

Differential Contribution of the Parental Genomes to a S. cerevisiae × S. uvarum Hybrid, Inferred by Phenomic, Genomic, and Transcriptomic Analyses, at Different Industrial Stress Conditions.

Lairón-Peris M, Pérez-Través L, Muñiz-Calvo S, Guillamón JM, Heras JM, Barrio E, Querol A.

Front Bioeng Biotechnol. 2020 Mar 3;8:129. doi: 10.3389/fbioe.2020.00129. eCollection 2020.

2.

Molecular profiling of beer wort fermentation diversity across natural Saccharomyces eubayanus isolates.

Mardones W, Villarroel CA, Krogerus K, Tapia SM, Urbina K, Oporto CI, O'Donnell S, Minebois R, Nespolo R, Fischer G, Querol A, Gibson B, Cubillos FA.

Microb Biotechnol. 2020 Feb 25. doi: 10.1111/1751-7915.13545. [Epub ahead of print]

3.

Genome structure reveals the diversity of mating mechanisms in Saccharomyces cerevisiae x Saccharomyces kudriavzevii hybrids, and the genomic instability that promotes phenotypic diversity.

Morard M, Benavent-Gil Y, Ortiz-Tovar G, Pérez-Través L, Querol A, Toft C, Barrio E.

Microb Genom. 2020 Mar;6(3). doi: 10.1099/mgen.0.000333.

4.

Inheritance of winemaking stress factors tolerance in Saccharomyces uvarum/S. eubayanus × S. cerevisiae artificial hybrids.

Origone AC, González Flores M, Rodríguez ME, Querol A, Lopes CA.

Int J Food Microbiol. 2020 May 2;320:108500. doi: 10.1016/j.ijfoodmicro.2019.108500. Epub 2020 Jan 3.

PMID:
32007764
5.

Mixed growth curve data do not suffice to fully characterize the dynamics of mixed cultures.

Balsa-Canto E, Alonso-Del-Real J, Querol A.

Proc Natl Acad Sci U S A. 2020 Jan 14;117(2):811-813. doi: 10.1073/pnas.1916774117. Epub 2019 Dec 24. No abstract available.

6.

Saccharomyces uvarum isolated from patagonian ciders shows excellent fermentative performance for low temperature cidermaking.

González Flores M, Rodríguez ME, Origone AC, Oteiza JM, Querol A, Lopes CA.

Food Res Int. 2019 Dec;126:108656. doi: 10.1016/j.foodres.2019.108656. Epub 2019 Sep 2.

PMID:
31732032
7.

Effect of transient thermal shocks on alcoholic fermentation performance.

Vargas-Trinidad AS, Lerena MC, Alonso-Del-Real J, Esteve-Zarzoso B, Mercado LA, Mas A, Querol A, Combina M.

Int J Food Microbiol. 2020 Jan 2;312:108362. doi: 10.1016/j.ijfoodmicro.2019.108362. Epub 2019 Oct 18.

PMID:
31669764
8.

Nitrogen sources preferences of non-Saccharomyces yeasts to sustain growth and fermentation under winemaking conditions.

Su Y, Seguinot P, Sanchez I, Ortiz-Julien A, Heras JM, Querol A, Camarasa C, Guillamón JM.

Food Microbiol. 2020 Feb;85:103287. doi: 10.1016/j.fm.2019.103287. Epub 2019 Aug 9.

PMID:
31500707
9.

Interspecific hybridisation among diverse Saccharomyces species: A combined biotechnological solution for low-temperature and nitrogen-limited wine fermentations.

Su Y, Gamero A, Rodríguez ME, Lopes CA, Querol A, Guillamón JM.

Int J Food Microbiol. 2019 Nov 16;310:108331. doi: 10.1016/j.ijfoodmicro.2019.108331. Epub 2019 Aug 27.

PMID:
31479829
10.

Aroma production and fermentation performance of S. cerevisiae × S. kudriavzevii natural hybrids under cold oenological conditions.

Ortiz-Tovar G, Minebois R, Barrio E, Querol A, Pérez-Torrado R.

Int J Food Microbiol. 2019 May 16;297:51-59. doi: 10.1016/j.ijfoodmicro.2019.03.005. Epub 2019 Mar 12.

PMID:
30878842
11.

Dominance of wine Saccharomyces cerevisiae strains over S. kudriavzevii in industrial fermentation competitions is related to an acceleration of nutrient uptake and utilization.

Alonso-Del-Real J, Pérez-Torrado R, Querol A, Barrio E.

Environ Microbiol. 2019 May;21(5):1627-1644. doi: 10.1111/1462-2920.14536. Epub 2019 Mar 10.

PMID:
30672093
12.

Improving the Cryotolerance of Wine Yeast by Interspecific Hybridization in the Genus Saccharomyces.

García-Ríos E, Guillén A, de la Cerda R, Pérez-Través L, Querol A, Guillamón JM.

Front Microbiol. 2019 Jan 8;9:3232. doi: 10.3389/fmicb.2018.03232. eCollection 2018.

13.

The qualified presumption of safety assessment and its role in EFSA risk evaluations: 15 years past.

Herman L, Chemaly M, Cocconcelli PS, Fernandez P, Klein G, Peixe L, Prieto M, Querol A, Suarez JE, Sundh I, Vlak J, Correia S.

FEMS Microbiol Lett. 2019 Jan 1;366(1). doi: 10.1093/femsle/fny260.

14.

Fermentative behaviour and competition capacity of cryotolerant Saccharomyces species in different nitrogen conditions.

Su Y, Origone AC, Rodríguez ME, Querol A, Guillamón JM, Lopes CA.

Int J Food Microbiol. 2019 Feb 16;291:111-120. doi: 10.1016/j.ijfoodmicro.2018.11.020. Epub 2018 Nov 22.

PMID:
30496940
15.

Author Correction: Multiple Approaches Detect the Presence of Fungi in Human Breastmilk Samples from Healthy Mothers.

Boix-Amorós A, Martinez-Costa C, Querol A, Collado MC, Mira A.

Sci Rep. 2018 Nov 9;8(1):16829. doi: 10.1038/s41598-018-35165-1.

16.

Stl1 transporter mediating the uptake of glycerol is not a weak point of Saccharomyces kudriavzevii's low osmotolerance.

Zemančíková J, Papoušková K, Peréz-Torrado R, Querol A, Sychrová H.

Lett Appl Microbiol. 2019 Jan;68(1):81-86. doi: 10.1111/lam.13093. Epub 2018 Nov 22.

PMID:
30382581
17.

New Trends in the Uses of Yeasts in Oenology.

Querol A, Pérez-Torrado R, Alonso-Del-Real J, Minebois R, Stribny J, Oliveira BM, Barrio E.

Adv Food Nutr Res. 2018;85:177-210. doi: 10.1016/bs.afnr.2018.03.002. Epub 2018 May 16.

PMID:
29860974
18.

A comparison of the performance of natural hybrids Saccharomyces cerevisiae × Saccharomyces kudriavzevii at low temperatures reveals the crucial role of their S. kudriavzevii genomic contribution.

Ortiz-Tovar G, Pérez-Torrado R, Adam AC, Barrio E, Querol A.

Int J Food Microbiol. 2018 Jun 2;274:12-19. doi: 10.1016/j.ijfoodmicro.2018.03.002. Epub 2018 Mar 7.

PMID:
29574243
19.

Membrane fluidification by ethanol stress activates unfolded protein response in yeasts.

Navarro-Tapia E, Querol A, Pérez-Torrado R.

Microb Biotechnol. 2018 May;11(3):465-475. doi: 10.1111/1751-7915.13032. Epub 2018 Feb 22.

20.

Saccharomyces cerevisiae and S. kudriavzevii Synthetic Wine Fermentation Performance Dissected by Predictive Modeling.

Henriques D, Alonso-Del-Real J, Querol A, Balsa-Canto E.

Front Microbiol. 2018 Feb 2;9:88. doi: 10.3389/fmicb.2018.00088. eCollection 2018.

21.

Expression of heterologous transporters in Saccharomyces kudriavzevii: A strategy for improving yeast salt tolerance and fermentation performance.

Dibalova-Culakova H, Alonso-Del-Real J, Querol A, Sychrova H.

Int J Food Microbiol. 2018 Mar 2;268:27-34. doi: 10.1016/j.ijfoodmicro.2018.01.002. Epub 2018 Jan 5.

PMID:
29324287
22.

Saccharomyces cerevisiae × Saccharomyces uvarum hybrids generated under different conditions share similar winemaking features.

Origone AC, Rodríguez ME, Oteiza JM, Querol A, Lopes CA.

Yeast. 2018 Jan;35(1):157-171. doi: 10.1002/yea.3295.

23.

The Use of Mixed Populations of Saccharomyces cerevisiae and S. kudriavzevii to Reduce Ethanol Content in Wine: Limited Aeration, Inoculum Proportions, and Sequential Inoculation.

Alonso-Del-Real J, Contreras-Ruiz A, Castiglioni GL, Barrio E, Querol A.

Front Microbiol. 2017 Oct 25;8:2087. doi: 10.3389/fmicb.2017.02087. eCollection 2017.

24.

Transcriptomic analysis of Saccharomyces cerevisiae x Saccharomyceskudriavzevii hybrids during low temperature winemaking.

Tronchoni J, García-Ríos E, Guillamón JM, Querol A, Pérez-Torrado R.

Version 3. F1000Res. 2017 May 15 [revised 2017 Jan 1];6:679. doi: 10.12688/f1000research.11550.3. eCollection 2017.

25.

On the origins and industrial applications of Saccharomyces cerevisiae × Saccharomyces kudriavzevii hybrids.

Peris D, Pérez-Torrado R, Hittinger CT, Barrio E, Querol A.

Yeast. 2018 Jan;35(1):51-69. doi: 10.1002/yea.3283. Epub 2017 Dec 6. Review.

26.

Multiple Approaches Detect the Presence of Fungi in Human Breastmilk Samples from Healthy Mothers.

Boix-Amorós A, Martinez-Costa C, Querol A, Collado MC, Mira A.

Sci Rep. 2017 Oct 12;7(1):13016. doi: 10.1038/s41598-017-13270-x. Erratum in: Sci Rep. 2018 Nov 9;8(1):16829.

27.

Saccharomyces cerevisiae show low levels of traversal across human endothelial barrier in vitro.

Pérez-Torrado R, Querol A.

Version 2. F1000Res. 2017 Jun 20 [revised 2017 Jan 1];6:944. doi: 10.12688/f1000research.11782.2. eCollection 2017.

28.

RNAseq-based transcriptome comparison of Saccharomyces cerevisiae strains isolated from diverse fermentative environments.

Ibáñez C, Pérez-Torrado R, Morard M, Toft C, Barrio E, Querol A.

Int J Food Microbiol. 2017 Sep 18;257:262-270. doi: 10.1016/j.ijfoodmicro.2017.07.001. Epub 2017 Jul 6.

PMID:
28711856
29.

Alternative yeasts for winemaking: Saccharomyces non-cerevisiae and its hybrids.

Pérez-Torrado R, Barrio E, Querol A.

Crit Rev Food Sci Nutr. 2018 Jul 24;58(11):1780-1790. doi: 10.1080/10408398.2017.1285751. Epub 2017 Jun 12. Review.

PMID:
28362111
30.

Ethanol Effects Involve Non-canonical Unfolded Protein Response Activation in Yeast Cells.

Navarro-Tapia E, Pérez-Torrado R, Querol A.

Front Microbiol. 2017 Mar 7;8:383. doi: 10.3389/fmicb.2017.00383. eCollection 2017.

31.

Ecological interactions among Saccharomyces cerevisiae strains: insight into the dominance phenomenon.

Pérez-Torrado R, Rantsiou K, Perrone B, Navarro-Tapia E, Querol A, Cocolin L.

Sci Rep. 2017 Mar 7;7:43603. doi: 10.1038/srep43603.

32.
33.

Mitochondrial introgression suggests extensive ancestral hybridization events among Saccharomyces species.

Peris D, Arias A, Orlić S, Belloch C, Pérez-Través L, Querol A, Barrio E.

Mol Phylogenet Evol. 2017 Mar;108:49-60. doi: 10.1016/j.ympev.2017.02.008. Epub 2017 Feb 9.

PMID:
28189617
34.

Saccharomyces uvarum is responsible for the traditional fermentation of apple chicha in Patagonia.

Rodríguez ME, Pérez-Través L, Sangorrín MP, Barrio E, Querol A, Lopes CA.

FEMS Yeast Res. 2017 Jan 1;17(1). doi: 10.1093/femsyr/fow109.

PMID:
28011906
35.

Increased mannoprotein content in wines produced by Saccharomyces kudriavzevii×Saccharomyces cerevisiae hybrids.

Pérez-Través L, Querol A, Pérez-Torrado R.

Int J Food Microbiol. 2016 Nov 21;237:35-38. doi: 10.1016/j.ijfoodmicro.2016.08.014. Epub 2016 Aug 12.

PMID:
27543813
36.
37.

iTRAQ-based proteome profiling of Saccharomyces cerevisiae and cryotolerant species Saccharomyces uvarum and Saccharomyces kudriavzevii during low-temperature wine fermentation.

García-Ríos E, Querol A, Guillamón JM.

J Proteomics. 2016 Sep 2;146:70-9. doi: 10.1016/j.jprot.2016.06.023. Epub 2016 Jun 22.

PMID:
27343759
38.

Alternative Glycerol Balance Strategies among Saccharomyces Species in Response to Winemaking Stress.

Pérez-Torrado R, Oliveira BM, Zemančíková J, Sychrová H, Querol A.

Front Microbiol. 2016 Mar 31;7:435. doi: 10.3389/fmicb.2016.00435. eCollection 2016.

39.

Characterisation of the broad substrate specificity 2-keto acid decarboxylase Aro10p of Saccharomyces kudriavzevii and its implication in aroma development.

Stribny J, Romagnoli G, Pérez-Torrado R, Daran JM, Querol A.

Microb Cell Fact. 2016 Mar 12;15:51. doi: 10.1186/s12934-016-0449-z.

40.

Ethanol Cellular Defense Induce Unfolded Protein Response in Yeast.

Navarro-Tapia E, Nana RK, Querol A, Pérez-Torrado R.

Front Microbiol. 2016 Feb 18;7:189. doi: 10.3389/fmicb.2016.00189. eCollection 2016.

41.

Opportunistic Strains of Saccharomyces cerevisiae: A Potential Risk Sold in Food Products.

Pérez-Torrado R, Querol A.

Front Microbiol. 2016 Jan 8;6:1522. doi: 10.3389/fmicb.2015.01522. eCollection 2015. Review.

42.

Enological characterization of Spanish Saccharomyces kudriavzevii strains, one of the closest relatives to parental strains of winemaking and brewing Saccharomyces cerevisiae × S. kudriavzevii hybrids.

Peris D, Pérez-Través L, Belloch C, Querol A.

Food Microbiol. 2016 Feb;53(Pt B):31-40. doi: 10.1016/j.fm.2015.07.010. Epub 2015 Jul 26.

PMID:
26678127
43.

Stabilization process in Saccharomyces intra and interspecific hybrids in fermentative conditions.

Pérez-Través L, Lopes CA, Barrio E, Querol A.

Int Microbiol. 2014 Dec;17(4):213-24. doi: 10.2436/20.1501.01.224.

44.
45.

Saccharomyces kudriavzevii and Saccharomyces uvarum differ from Saccharomyces cerevisiae during the production of aroma-active higher alcohols and acetate esters using their amino acidic precursors.

Stribny J, Gamero A, Pérez-Torrado R, Querol A.

Int J Food Microbiol. 2015 Jul 16;205:41-6. doi: 10.1016/j.ijfoodmicro.2015.04.003. Epub 2015 Apr 8.

PMID:
25886016
46.

Physiological and genomic characterisation of Saccharomyces cerevisiae hybrids with improved fermentation performance and mannoprotein release capacity.

Pérez-Través L, Lopes CA, González R, Barrio E, Querol A.

Int J Food Microbiol. 2015 Jul 16;205:30-40. doi: 10.1016/j.ijfoodmicro.2015.04.004. Epub 2015 Apr 9.

PMID:
25879876
47.

Molecular and enological characterization of a natural Saccharomyces uvarum and Saccharomyces cerevisiae hybrid.

Pérez-Torrado R, González SS, Combina M, Barrio E, Querol A.

Int J Food Microbiol. 2015 Jul 2;204:101-10. doi: 10.1016/j.ijfoodmicro.2015.03.012. Epub 2015 Mar 17.

PMID:
25867085
48.

Comparative genomic analysis reveals a critical role of de novo nucleotide biosynthesis for Saccharomyces cerevisiae virulence.

Pérez-Torrado R, Llopis S, Perrone B, Gómez-Pastor R, Hube B, Querol A.

PLoS One. 2015 Mar 27;10(3):e0122382. doi: 10.1371/journal.pone.0122382. eCollection 2015.

49.

Transcriptomics of cryophilic Saccharomyces kudriavzevii reveals the key role of gene translation efficiency in cold stress adaptations.

Tronchoni J, Medina V, Guillamón JM, Querol A, Pérez-Torrado R.

BMC Genomics. 2014 Jun 4;15:432. doi: 10.1186/1471-2164-15-432.

50.

Pathogenic potential of Saccharomyces strains isolated from dietary supplements.

Llopis S, Hernández-Haro C, Monteoliva L, Querol A, Molina M, Fernández-Espinar MT.

PLoS One. 2014 May 30;9(5):e98094. doi: 10.1371/journal.pone.0098094. eCollection 2014.

Supplemental Content

Loading ...
Support Center