Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 74

1.

Skeletal Stem Cell-Schwann Cell Circuitry in Mandibular Repair.

Jones RE, Salhotra A, Robertson KS, Ransom RC, Foster DS, Shah HN, Quarto N, Wan DC, Longaker MT.

Cell Rep. 2019 Sep 10;28(11):2757-2766.e5. doi: 10.1016/j.celrep.2019.08.021.

2.

Twist1-Haploinsufficiency Selectively Enhances the Osteoskeletal Capacity of Mesoderm-Derived Parietal Bone Through Downregulation of Fgf23.

Quarto N, Shailendra S, Meyer NP, Menon S, Renda A, Longaker MT.

Front Physiol. 2018 Oct 15;9:1426. doi: 10.3389/fphys.2018.01426. eCollection 2018.

3.

* Calvarial Defects: Cell-Based Reconstructive Strategies in the Murine Model.

Murphy MP, Quarto N, Longaker MT, Wan DC.

Tissue Eng Part C Methods. 2017 Dec;23(12):971-981. doi: 10.1089/ten.TEC.2017.0230. Epub 2017 Oct 4. Review.

4.

Invited Commentary on: Role of Notch Signaling in the Physiological Patterning of Posterofrontal and Sagittal Cranial Sutures.

Quarto N, Longaker MT.

J Craniofac Surg. 2017 Sep;28(6):1626-1627. doi: 10.1097/SCS.0000000000003745. No abstract available.

PMID:
28796102
5.

Magnetic Nanoparticle-Based Upregulation of B-Cell Lymphoma 2 Enhances Bone Regeneration.

Brett E, Zielins ER, Luan A, Ooi CC, Shailendra S, Atashroo D, Menon S, Blackshear C, Flacco J, Quarto N, Wang SX, Longaker MT, Wan DC.

Stem Cells Transl Med. 2017 Jan;6(1):151-160. doi: 10.5966/sctm.2016-0051. Epub 2016 Aug 2.

6.

Small Molecule Inhibition of Transforming Growth Factor Beta Signaling Enables the Endogenous Regenerative Potential of the Mammalian Calvarium.

Senarath-Yapa K, Li S, Walmsley GG, Zielins E, Paik K, Britto JA, Grigoriadis AE, Wan DC, Liu KJ, Longaker MT, Quarto N.

Tissue Eng Part A. 2016 May;22(9-10):707-20. doi: 10.1089/ten.TEA.2015.0527. Epub 2016 Apr 26.

7.

An Overview of Direct Somatic Reprogramming: The Ins and Outs of iPSCs.

Menon S, Shailendra S, Renda A, Longaker M, Quarto N.

Int J Mol Sci. 2016 Jan 21;17(1). pii: E141. doi: 10.3390/ijms17010141. Review.

8.

Enhanced Activation of Canonical Wnt Signaling Confers Mesoderm-Derived Parietal Bone with Similar Osteogenic and Skeletal Healing Capacity to Neural Crest-Derived Frontal Bone.

Li S, Quarto N, Senarath-Yapa K, Grey N, Bai X, Longaker MT.

PLoS One. 2015 Oct 2;10(10):e0138059. doi: 10.1371/journal.pone.0138059. eCollection 2015.

9.
10.

Adipose-derived stem cells: a review of signaling networks governing cell fate and regenerative potential in the context of craniofacial and long bone skeletal repair.

Senarath-Yapa K, McArdle A, Renda A, Longaker MT, Quarto N.

Int J Mol Sci. 2014 May 26;15(6):9314-30. doi: 10.3390/ijms15069314. Review.

11.

Abstract 54: TGF Beta and BMP Signaling Pathways Influence Regenerative Capacity of Calvarial Bones via Cross-Talk and Modulation of Apoptosis: The Potential Therapeutic Role of Small Molecule Inhibitors of TGF Beta Signaling.

Senarath-Yapa K, Meyer N, Li S, Longaker MT, Quarto N.

Plast Reconstr Surg. 2014 Mar;133(3 Suppl):65-6. doi: 10.1097/01.prs.0000445087.68975.92. No abstract available.

PMID:
25942165
12.

Absence of endochondral ossification and craniosynostosis in posterior frontal cranial sutures of Axin2(-/-) mice.

Behr B, Longaker MT, Quarto N.

PLoS One. 2013 Aug 1;8(8):e70240. doi: 10.1371/journal.pone.0070240. Print 2013.

13.

Integration of multiple signaling regulates through apoptosis the differential osteogenic potential of neural crest-derived and mesoderm-derived Osteoblasts.

Li S, Meyer NP, Quarto N, Longaker MT.

PLoS One. 2013;8(3):e58610. doi: 10.1371/journal.pone.0058610. Epub 2013 Mar 25.

14.
15.

Craniosynostosis: molecular pathways and future pharmacologic therapy.

Senarath-Yapa K, Chung MT, McArdle A, Wong VW, Quarto N, Longaker MT, Wan DC.

Organogenesis. 2012 Oct-Dec;8(4):103-13. doi: 10.4161/org.23307. Epub 2012 Oct 1. Review.

16.

CD90 (Thy-1)-positive selection enhances osteogenic capacity of human adipose-derived stromal cells.

Chung MT, Liu C, Hyun JS, Lo DD, Montoro DT, Hasegawa M, Li S, Sorkin M, Rennert R, Keeney M, Yang F, Quarto N, Longaker MT, Wan DC.

Tissue Eng Part A. 2013 Apr;19(7-8):989-97. doi: 10.1089/ten.TEA.2012.0370. Epub 2013 Jan 28.

18.

A comparative analysis of the osteogenic effects of BMP-2, FGF-2, and VEGFA in a calvarial defect model.

Behr B, Sorkin M, Lehnhardt M, Renda A, Longaker MT, Quarto N.

Tissue Eng Part A. 2012 May;18(9-10):1079-86. doi: 10.1089/ten.TEA.2011.0537. Epub 2012 Feb 28.

19.

Skeletogenic phenotype of human Marfan embryonic stem cells faithfully phenocopied by patient-specific induced-pluripotent stem cells.

Quarto N, Leonard B, Li S, Marchand M, Anderson E, Behr B, Francke U, Reijo-Pera R, Chiao E, Longaker MT.

Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):215-20. doi: 10.1073/pnas.1113442109. Epub 2011 Dec 16.

20.

Role of GSK-3β in the osteogenic differentiation of palatal mesenchyme.

Nelson ER, Levi B, Sorkin M, James AW, Liu KJ, Quarto N, Longaker MT.

PLoS One. 2011;6(10):e25847. doi: 10.1371/journal.pone.0025847. Epub 2011 Oct 14.

21.

Nonintegrating knockdown and customized scaffold design enhances human adipose-derived stem cells in skeletal repair.

Levi B, Hyun JS, Nelson ER, Li S, Montoro DT, Wan DC, Jia FJ, Glotzbach JC, James AW, Lee M, Huang M, Quarto N, Gurtner GC, Wu JC, Longaker MT.

Stem Cells. 2011 Dec;29(12):2018-29. doi: 10.1002/stem.757.

22.

CD105 protein depletion enhances human adipose-derived stromal cell osteogenesis through reduction of transforming growth factor β1 (TGF-β1) signaling.

Levi B, Wan DC, Glotzbach JP, Hyun J, Januszyk M, Montoro D, Sorkin M, James AW, Nelson ER, Li S, Quarto N, Lee M, Gurtner GC, Longaker MT.

J Biol Chem. 2011 Nov 11;286(45):39497-509. doi: 10.1074/jbc.M111.256529. Epub 2011 Sep 23.

23.
25.

Fgf-18 is required for osteogenesis but not angiogenesis during long bone repair.

Behr B, Sorkin M, Manu A, Lehnhardt M, Longaker MT, Quarto N.

Tissue Eng Part A. 2011 Aug;17(15-16):2061-9. doi: 10.1089/ten.TEA.2010.0719. Epub 2011 Jun 1.

26.

Differential expression of sclerostin in adult and juvenile mouse calvariae.

Kwan MD, Quarto N, Gupta DM, Slater BJ, Wan DC, Longaker MT.

Plast Reconstr Surg. 2011 Feb;127(2):595-602. doi: 10.1097/PRS.0b013e3181fed60d.

27.

Chemical control of FGF-2 release for promoting calvarial healing with adipose stem cells.

Kwan MD, Sellmyer MA, Quarto N, Ho AM, Wandless TJ, Longaker MT.

J Biol Chem. 2011 Apr 1;286(13):11307-13. doi: 10.1074/jbc.M110.180042. Epub 2011 Jan 24.

28.
29.
30.

Fgf-9 is required for angiogenesis and osteogenesis in long bone repair.

Behr B, Leucht P, Longaker MT, Quarto N.

Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11853-8. doi: 10.1073/pnas.1003317107. Epub 2010 Jun 14.

31.

Differential activation of canonical Wnt signaling determines cranial sutures fate: a novel mechanism for sagittal suture craniosynostosis.

Behr B, Longaker MT, Quarto N.

Dev Biol. 2010 Aug 15;344(2):922-40. doi: 10.1016/j.ydbio.2010.06.009. Epub 2010 Jun 12.

32.

Different endogenous threshold levels of Fibroblast Growth Factor-ligands determine the healing potential of frontal and parietal bones.

Behr B, Panetta NJ, Longaker MT, Quarto N.

Bone. 2010 Aug;47(2):281-94. doi: 10.1016/j.bone.2010.05.008. Epub 2010 May 21.

PMID:
20472108
33.

Unique modulation of cadherin expression pattern during posterior frontal cranial suture development and closure.

Sahar DE, Behr B, Fong KD, Longaker MT, Quarto N.

Cells Tissues Organs. 2010;191(5):401-13. doi: 10.1159/000272318. Epub 2009 Dec 24.

34.

Origin matters: differences in embryonic tissue origin and Wnt signaling determine the osteogenic potential and healing capacity of frontal and parietal calvarial bones.

Quarto N, Wan DC, Kwan MD, Panetta NJ, Li S, Longaker MT.

J Bone Miner Res. 2010 Jul;25(7):1680-94. doi: 10.1359/jbmr.091116.

35.

Mesenchymal cells for skeletal tissue engineering.

Panetta NJ, Gupta DM, Quarto N, Longaker MT.

Panminerva Med. 2009 Mar;51(1):25-41. Review.

36.

Differential FGF ligands and FGF receptors expression pattern in frontal and parietal calvarial bones.

Quarto N, Behr B, Li S, Longaker MT.

Cells Tissues Organs. 2009;190(3):158-69. doi: 10.1159/000202789. Epub 2009 Feb 13.

37.

Cranial osteogenesis and suture morphology in Xenopus laevis: a unique model system for studying craniofacial development.

Slater BJ, Liu KJ, Kwan MD, Quarto N, Longaker MT.

PLoS One. 2009;4(1):e3914. doi: 10.1371/journal.pone.0003914. Epub 2009 Jan 19.

38.

Temporal and spatial expression of RNases from zebrafish (Danio rerio).

Quarto N, Pizzo E, D'Alessio G.

Gene. 2008 Dec 31;427(1-2):32-41. doi: 10.1016/j.gene.2008.09.006. Epub 2008 Sep 16.

PMID:
18852033
39.
40.

Molecular mechanisms of FGF-2 inhibitory activity in the osteogenic context of mouse adipose-derived stem cells (mASCs).

Quarto N, Wan DC, Longaker MT.

Bone. 2008 Jun;42(6):1040-52. doi: 10.1016/j.bone.2008.01.026. Epub 2008 Feb 20.

PMID:
18420480
41.

Dura mater-derived FGF-2 mediates mitogenic signaling in calvarial osteoblasts.

Li S, Quarto N, Longaker MT.

Am J Physiol Cell Physiol. 2007 Dec;293(6):C1834-42. Epub 2007 Oct 3.

42.

Osteogenic differentiation of mouse adipose-derived adult stromal cells requires retinoic acid and bone morphogenetic protein receptor type IB signaling.

Wan DC, Shi YY, Nacamuli RP, Quarto N, Lyons KM, Longaker MT.

Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12335-40. Epub 2006 Aug 7.

43.

Ribonucleases and angiogenins from fish.

Pizzo E, Buonanno P, Di Maro A, Ponticelli S, De Falco S, Quarto N, Cubellis MV, D'Alessio G.

J Biol Chem. 2006 Sep 15;281(37):27454-60. Epub 2006 Jul 21.

45.

Absence of the p53 tumor suppressor gene promotes osteogenesis in mesenchymal stem cells.

Tataria M, Quarto N, Longaker MT, Sylvester KG.

J Pediatr Surg. 2006 Apr;41(4):624-32; discussion 624-32.

PMID:
16567167
46.

The zebrafish (Danio rerio): a model system for cranial suture patterning.

Quarto N, Longaker MT.

Cells Tissues Organs. 2005;181(2):109-18.

PMID:
16534205
47.

Gene profiling of cells expressing different FGF-2 forms.

Quarto N, Fong KD, Longaker MT.

Gene. 2005 Aug 15;356:49-68.

PMID:
16023796
48.
49.

Bone morphogenetic protein 2 and retinoic acid accelerate in vivo bone formation, osteoclast recruitment, and bone turnover.

Cowan CM, Aalami OO, Shi YY, Chou YF, Mari C, Thomas R, Quarto N, Nacamuli RP, Contag CH, Wu B, Longaker MT.

Tissue Eng. 2005 Mar-Apr;11(3-4):645-58.

PMID:
15869441
50.

Adipose-derived adult stromal cells heal critical-size mouse calvarial defects.

Cowan CM, Shi YY, Aalami OO, Chou YF, Mari C, Thomas R, Quarto N, Contag CH, Wu B, Longaker MT.

Nat Biotechnol. 2004 May;22(5):560-7. Epub 2004 Apr 11.

PMID:
15077117

Supplemental Content

Loading ...
Support Center