Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 47

1.

HadD, a novel fatty acid synthase type II protein, is essential for alpha- and epoxy-mycolic acid biosynthesis and mycobacterial fitness.

Lefebvre C, Boulon R, Ducoux M, Gavalda S, Laval F, Jamet S, Eynard N, Lemassu A, Cam K, Bousquet MP, Bardou F, Burlet-Schiltz O, Daffé M, Quémard A.

Sci Rep. 2018 Apr 16;8(1):6034. doi: 10.1038/s41598-018-24380-5.

2.

Insights into Substrate Modification by Dehydratases from Type I Polyketide Synthases.

Faille A, Gavalda S, Slama N, Lherbet C, Maveyraud L, Guillet V, Laval F, Quémard A, Mourey L, Pedelacq JD.

J Mol Biol. 2017 May 19;429(10):1554-1569. doi: 10.1016/j.jmb.2017.03.026. Epub 2017 Apr 1.

PMID:
28377293
3.

Functional reconstitution of the Mycobacterium tuberculosis long-chain acyl-CoA carboxylase from multiple acyl-CoA subunits.

Bazet Lyonnet B, Diacovich L, Gago G, Spina L, Bardou F, Lemassu A, Quémard A, Gramajo H.

FEBS J. 2017 Apr;284(7):1110-1125. doi: 10.1111/febs.14046. Epub 2017 Mar 19.

4.

Evaluation of the inhibitory activity of (aza)isoindolinone-type compounds: toward in vitro InhA action, Mycobacterium tuberculosis growth and mycolic acid biosynthesis.

Chollet A, Stigliani JL, Pasca MR, Mori G, Lherbet C, Constant P, Quémard A, Bernadou J, Pratviel G, Bernardes-Génisson V.

Chem Biol Drug Des. 2016 Nov;88(5):740-755. doi: 10.1111/cbdd.12804. Epub 2016 Jul 16.

PMID:
27301022
5.

New Insights into the Mycolate-Containing Compound Biosynthesis and Transport in Mycobacteria.

Quémard A.

Trends Microbiol. 2016 Sep;24(9):725-738. doi: 10.1016/j.tim.2016.04.009. Epub 2016 Jun 3. Review.

PMID:
27268593
6.

The Non-Essential Mycolic Acid Biosynthesis Genes hadA and hadC Contribute to the Physiology and Fitness of Mycobacterium smegmatis.

Jamet S, Slama N, Domingues J, Laval F, Texier P, Eynard N, Quémard A, Peixoto A, Lemassu A, Daffé M, Cam K.

PLoS One. 2015 Dec 23;10(12):e0145883. doi: 10.1371/journal.pone.0145883. eCollection 2015.

7.

The changes in mycolic acid structures caused by hadC mutation have a dramatic effect on the virulence of Mycobacterium tuberculosis.

Slama N, Jamet S, Frigui W, Pawlik A, Bottai D, Laval F, Constant P, Lemassu A, Cam K, Daffé M, Brosch R, Eynard N, Quémard A.

Mol Microbiol. 2016 Feb;99(4):794-807. doi: 10.1111/mmi.13266. Epub 2015 Nov 27.

8.

Design, synthesis and evaluation of new GEQ derivatives as inhibitors of InhA enzyme and Mycobacterium tuberculosis growth.

Chollet A, Mori G, Menendez C, Rodriguez F, Fabing I, Pasca MR, Madacki J, Korduláková J, Constant P, Quémard A, Bernardes-Génisson V, Lherbet C, Baltas M.

Eur J Med Chem. 2015 Aug 28;101:218-35. doi: 10.1016/j.ejmech.2015.06.035. Epub 2015 Jun 20.

PMID:
26142487
9.

Covalent modification of the Mycobacterium tuberculosis FAS-II dehydratase by Isoxyl and Thiacetazone.

Grzegorzewicz AE, Eynard N, Quémard A, North EJ, Margolis A, Lindenberger JJ, Jones V, Korduláková J, Brennan PJ, Lee RE, Ronning DR, McNeil MR, Jackson M.

ACS Infect Dis. 2015 Feb 13;1(2):91-97.

10.

The polyketide synthase Pks13 catalyzes a novel mechanism of lipid transfer in mycobacteria.

Gavalda S, Bardou F, Laval F, Bon C, Malaga W, Chalut C, Guilhot C, Mourey L, Daffé M, Quémard A.

Chem Biol. 2014 Dec 18;21(12):1660-9. doi: 10.1016/j.chembiol.2014.10.011. Epub 2014 Nov 26.

11.

Pleiotropic effect of AccD5 and AccE5 depletion in acyl-coenzyme A carboxylase activity and in lipid biosynthesis in mycobacteria.

Bazet Lyonnet B, Diacovich L, Cabruja M, Bardou F, Quémard A, Gago G, Gramajo H.

PLoS One. 2014 Jun 20;9(6):e99853. doi: 10.1371/journal.pone.0099853. eCollection 2014.

12.

A common mechanism of inhibition of the Mycobacterium tuberculosis mycolic acid biosynthetic pathway by isoxyl and thiacetazone.

Grzegorzewicz AE, Korduláková J, Jones V, Born SE, Belardinelli JM, Vaquié A, Gundi VA, Madacki J, Slama N, Laval F, Vaubourgeix J, Crew RM, Gicquel B, Daffé M, Morbidoni HR, Brennan PJ, Quémard A, McNeil MR, Jackson M.

J Biol Chem. 2012 Nov 9;287(46):38434-41. doi: 10.1074/jbc.M112.400994. Epub 2012 Sep 21.

13.

Biochemical and structural study of the atypical acyltransferase domain from the mycobacterial polyketide synthase Pks13.

Bergeret F, Gavalda S, Chalut C, Malaga W, Quémard A, Pedelacq JD, Daffé M, Guilhot C, Mourey L, Bon C.

J Biol Chem. 2012 Sep 28;287(40):33675-90. Epub 2012 Jul 23.

14.

Preliminary investigations of the effect of lipophilic analogues of the active metabolite of isoniazid toward bacterial and plasmodial strains.

Delaine T, Bernardes-Génisson V, Quémard A, Constant P, Cosledan F, Meunier B, Bernadou J.

Chem Biol Drug Des. 2012 Jun;79(6):1001-6. doi: 10.1111/j.1747-0285.2012.01374.x. Epub 2012 Apr 10.

PMID:
22405039
15.

Chemical synthesis, biological evaluation and structure-activity relationship analysis of azaisoindolinones, a novel class of direct enoyl-ACP reductase inhibitors as potential antimycobacterial agents.

Deraeve C, Dorobantu IM, Rebbah F, Le Quéméner F, Constant P, Quémard A, Bernardes-Génisson V, Bernadou J, Pratviel G.

Bioorg Med Chem. 2011 Nov 1;19(21):6225-32. doi: 10.1016/j.bmc.2011.09.017. Epub 2011 Sep 14.

PMID:
21975068
16.

Negative regulation by Ser/Thr phosphorylation of HadAB and HadBC dehydratases from Mycobacterium tuberculosis type II fatty acid synthase system.

Slama N, Leiba J, Eynard N, Daffé M, Kremer L, Quémard A, Molle V.

Biochem Biophys Res Commun. 2011 Sep 2;412(3):401-6. doi: 10.1016/j.bbrc.2011.07.051. Epub 2011 Jul 27.

PMID:
21819969
17.

Development of isoniazid-NAD truncated adducts embedding a lipophilic fragment as potential bi-substrate InhA inhibitors and antimycobacterial agents.

Delaine T, Bernardes-Génisson V, Quémard A, Constant P, Meunier B, Bernadou J.

Eur J Med Chem. 2010 Oct;45(10):4554-61. doi: 10.1016/j.ejmech.2010.07.016. Epub 2010 Jul 15.

PMID:
20696503
18.

Revisiting the assignment of Rv0241c to fatty acid synthase type II of Mycobacterium tuberculosis.

Sacco E, Slama N, Bäckbro K, Parish T, Laval F, Daffé M, Eynard N, Quémard A.

J Bacteriol. 2010 Aug;192(15):4037-44. doi: 10.1128/JB.00386-10. Epub 2010 May 28.

19.

The dual function of the Mycobacterium tuberculosis FadD32 required for mycolic acid biosynthesis.

Léger M, Gavalda S, Guillet V, van der Rest B, Slama N, Montrozier H, Mourey L, Quémard A, Daffé M, Marrakchi H.

Chem Biol. 2009 May 29;16(5):510-9. doi: 10.1016/j.chembiol.2009.03.012.

20.

S-adenosyl-N-decyl-aminoethyl, a potent bisubstrate inhibitor of mycobacterium tuberculosis mycolic acid methyltransferases.

Vaubourgeix J, Bardou F, Boissier F, Julien S, Constant P, Ploux O, Daffé M, Quémard A, Mourey L.

J Biol Chem. 2009 Jul 17;284(29):19321-30. doi: 10.1074/jbc.M809599200. Epub 2009 May 13.

21.

The Pks13/FadD32 crosstalk for the biosynthesis of mycolic acids in Mycobacterium tuberculosis.

Gavalda S, Léger M, van der Rest B, Stella A, Bardou F, Montrozier H, Chalut C, Burlet-Schiltz O, Marrakchi H, Daffé M, Quémard A.

J Biol Chem. 2009 Jul 17;284(29):19255-64. doi: 10.1074/jbc.M109.006940. Epub 2009 May 12.

22.

The missing piece of the type II fatty acid synthase system from Mycobacterium tuberculosis.

Sacco E, Covarrubias AS, O'Hare HM, Carroll P, Eynard N, Jones TA, Parish T, Daffé M, Bäckbro K, Quémard A.

Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14628-33. Epub 2007 Sep 5.

23.

Lack of dynamics in the MabA active site kills the enzyme activity: practical consequences for drug-design studies.

Poncet-Montange G, Ducasse-Cabanot S, Quemard A, Labesse G, Cohen-Gonsaud M.

Acta Crystallogr D Biol Crystallogr. 2007 Aug;63(Pt 8):923-5. Epub 2007 Jul 17.

PMID:
17642518
24.

Rv3389C from Mycobacterium tuberculosis, a member of the (R)-specific hydratase/dehydratase family.

Sacco E, Legendre V, Laval F, Zerbib D, Montrozier H, Eynard N, Guilhot C, Daffé M, Quémard A.

Biochim Biophys Acta. 2007 Feb;1774(2):303-11. Epub 2006 Dec 6.

PMID:
17240207
25.

Further insight into S-adenosylmethionine-dependent methyltransferases: structural characterization of Hma, an enzyme essential for the biosynthesis of oxygenated mycolic acids in Mycobacterium tuberculosis.

Boissier F, Bardou F, Guillet V, Uttenweiler-Joseph S, Daffé M, Quémard A, Mourey L.

J Biol Chem. 2006 Feb 17;281(7):4434-45. Epub 2005 Dec 15.

26.

The first chemical synthesis of the core structure of the benzoylhydrazine-NAD adduct, a competitive inhibitor of the Mycobacterium tuberculosis enoyl reductase.

Broussy S, Bernardes-Génisson V, Quémard A, Meunier B, Bernadou J.

J Org Chem. 2005 Dec 9;70(25):10502-10.

PMID:
16323864
27.

Ligand-induced fit in mycobacterial MabA: the sequence-specific C-terminus locks the conformational change.

Cohen-Gonsaud M, Ducasse-Cabanot S, Quemard A, Labesse G.

Proteins. 2005 Aug 15;60(3):392-400.

PMID:
15977159
28.

1H and 13C NMR characterization of pyridinium-type isoniazid-NAD adducts as possible inhibitors of InhA reductase of Mycobacterium tuberculosis.

Broussy S, Bernardes-Génisson V, Coppel Y, Quémard A, Bernadou J, Meunier B.

Org Biomol Chem. 2005 Feb 21;3(4):670-3. Epub 2005 Jan 21.

PMID:
15703806
29.

In vitro inhibition of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein reductase MabA by isoniazid.

Ducasse-Cabanot S, Cohen-Gonsaud M, Marrakchi H, Nguyen M, Zerbib D, Bernadou J, Daffé M, Labesse G, Quémard A.

Antimicrob Agents Chemother. 2004 Jan;48(1):242-9.

30.

Crystal structure of MabA from Mycobacterium tuberculosis, a reductase involved in long-chain fatty acid biosynthesis.

Cohen-Gonsaud M, Ducasse S, Hoh F, Zerbib D, Labesse G, Quemard A.

J Mol Biol. 2002 Jul 5;320(2):249-61.

PMID:
12079383
31.

Mn(III) pyrophosphate as an efficient tool for studying the mode of action of isoniazid on the InhA protein of Mycobacterium tuberculosis.

Nguyen M, Quémard A, Broussy S, Bernadou J, Meunier B.

Antimicrob Agents Chemother. 2002 Jul;46(7):2137-44.

32.

MabA (FabG1), a Mycobacterium tuberculosis protein involved in the long-chain fatty acid elongation system FAS-II.

Marrakchi H, Ducasse S, Labesse G, Montrozier H, Margeat E, Emorine L, Charpentier X, Daffé M, Quémard A.

Microbiology. 2002 Apr;148(Pt 4):951-60.

PMID:
11932442
33.

Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice.

Dubnau E, Chan J, Raynaud C, Mohan VP, Lanéelle MA, Yu K, Quémard A, Smith I, Daffé M.

Mol Microbiol. 2000 May;36(3):630-7.

34.

InhA, a target of the antituberculous drug isoniazid, is involved in a mycobacterial fatty acid elongation system, FAS-II.

Marrakchi H, Lanéelle G, Quémard A.

Microbiology. 2000 Feb;146 ( Pt 2):289-96.

PMID:
10708367
35.

Mutations in the cmaB gene are responsible for the absence of methoxymycolic acid in Mycobacterium bovis BCG Pasteur.

Dubnau E, Marrakchi H, Smith I, Daffé M, Quémard A.

Mol Microbiol. 1998 Sep;29(6):1526-8. No abstract available.

36.

Structure of a hydroxymycolic acid potentially involved in the synthesis of oxygenated mycolic acids of the Mycobacterium tuberculosis complex.

Quémard A, Lanéelle MA, Marrakchi H, Promé D, Dubnau E, Daffé M.

Eur J Biochem. 1997 Dec 15;250(3):758-63.

37.

Mycobacterium bovis BCG genes involved in the biosynthesis of cyclopropyl keto- and hydroxy-mycolic acids.

Dubnau E, Lanéelle MA, Soares S, Bénichou A, Vaz T, Promé D, Promé JC, Daffé M, Quémard A.

Mol Microbiol. 1997 Jan;23(2):313-22.

38.

Effects of isoniazid on ultrastructure of Mycobacterium aurum and Mycobacterium tuberculosis and on production of secreted proteins.

Bardou F, Quémard A, Dupont MA, Horn C, Marchal G, Daffé M.

Antimicrob Agents Chemother. 1996 Nov;40(11):2459-67.

39.

Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis.

Quémard A, Sacchettini JC, Dessen A, Vilcheze C, Bittman R, Jacobs WR Jr, Blanchard JS.

Biochemistry. 1995 Jul 4;34(26):8235-41.

PMID:
7599116
40.

Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis.

Dessen A, Quémard A, Blanchard JS, Jacobs WR Jr, Sacchettini JC.

Science. 1995 Mar 17;267(5204):1638-41.

PMID:
7886450
41.

Certain properties of isoniazid inhibition of mycolic acid synthesis in cell-free systems of M. aurum and M. avium.

Quémard A, Mazères S, Sut A, Lanéelle G, Lacave C.

Biochim Biophys Acta. 1995 Jan 3;1254(1):98-104.

PMID:
7811753
42.

inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis.

Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, de Lisle G, Jacobs WR Jr.

Science. 1994 Jan 14;263(5144):227-30.

PMID:
8284673
43.

Ethambutol inhibition of glucose metabolism in mycobacteria: a possible target of the drug.

Silve G, Valero-Guillen P, Quemard A, Dupont MA, Daffe M, Laneelle G.

Antimicrob Agents Chemother. 1993 Jul;37(7):1536-8.

44.

Mycolic acid synthesis: a target for ethionamide in mycobacteria?

Quémard A, Lanéelle G, Lacave C.

Antimicrob Agents Chemother. 1992 Jun;36(6):1316-21.

45.

Ethylenic mycolic acid biosynthesis: extension of the biosynthetic model using cell-free extracts of Mycobacterium aurum and Mycobacterium smegmatis.

Lopez-Marin LM, Quemard A, Laneelle G, Lacave C.

Biochim Biophys Acta. 1991 Oct 15;1086(1):22-8.

PMID:
1954242
46.
47.

Supplemental Content

Loading ...
Support Center