Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 137

1.

Engineering CRISPR/LbCas12a for highly efficient, temperature-tolerant plant gene editing.

Schindele P, Puchta H.

Plant Biotechnol J. 2019 Oct 13. doi: 10.1111/pbi.13275. [Epub ahead of print] No abstract available.

2.

Analyzing Somatic DNA Repair in Arabidopsis Meiotic Mutants.

Dorn A, Puchta H.

Methods Mol Biol. 2020;2061:359-366. doi: 10.1007/978-1-4939-9818-0_25.

PMID:
31583672
3.

CRISPR/Cas brings plant biology and breeding into the fast lane.

Schindele A, Dorn A, Puchta H.

Curr Opin Biotechnol. 2019 Sep 23;61:7-14. doi: 10.1016/j.copbio.2019.08.006. [Epub ahead of print] Review.

PMID:
31557657
4.

Standardized image post-processing of cardiovascular magnetic resonance T1-mapping reduces variability and improves accuracy and consistency in myocardial tissue characterization.

Carapella V, Puchta H, Lukaschuk E, Marini C, Werys K, Neubauer S, Ferreira VM, Piechnik SK.

Int J Cardiol. 2019 Aug 31. pii: S0167-5273(19)31833-9. doi: 10.1016/j.ijcard.2019.08.058. [Epub ahead of print]

PMID:
31500864
5.

DNA- and DNA-Protein-Crosslink Repair in Plants.

Enderle J, Dorn A, Puchta H.

Int J Mol Sci. 2019 Sep 3;20(17). pii: E4304. doi: 10.3390/ijms20174304. Review.

6.

In planta gene targeting can be enhanced by the use of CRISPR/Cas12a.

Wolter F, Puchta H.

Plant J. 2019 Aug 5. doi: 10.1111/tpj.14488. [Epub ahead of print]

PMID:
31381206
7.

An Arabidopsis FANCJ helicase homologue is required for DNA crosslink repair and rDNA repeat stability.

Dorn A, Feller L, Castri D, Röhrig S, Enderle J, Herrmann NJ, Block-Schmidt A, Trapp O, Köhler L, Puchta H.

PLoS Genet. 2019 May 23;15(5):e1008174. doi: 10.1371/journal.pgen.1008174. eCollection 2019 May.

8.

Plant breeding at the speed of light: the power of CRISPR/Cas to generate directed genetic diversity at multiple sites.

Wolter F, Schindele P, Puchta H.

BMC Plant Biol. 2019 May 2;19(1):176. doi: 10.1186/s12870-019-1775-1. Review.

9.

Efficient induction of heritable inversions in plant genomes using the CRISPR/Cas system.

Schmidt C, Pacher M, Puchta H.

Plant J. 2019 May;98(4):577-589. doi: 10.1111/tpj.14322. Epub 2019 Apr 16.

PMID:
30900787
10.

Automated localization and quality control of the aorta in cine CMR can significantly accelerate processing of the UK Biobank population data.

Biasiolli L, Hann E, Lukaschuk E, Carapella V, Paiva JM, Aung N, Rayner JJ, Werys K, Fung K, Puchta H, Sanghvi MM, Moon NO, Thomson RJ, Thomas KE, Robson MD, Grau V, Petersen SE, Neubauer S, Piechnik SK.

PLoS One. 2019 Feb 14;14(2):e0212272. doi: 10.1371/journal.pone.0212272. eCollection 2019.

11.

The Protease WSS1A, the Endonuclease MUS81, and the Phosphodiesterase TDP1 Are Involved in Independent Pathways of DNA-protein Crosslink Repair in Plants.

Enderle J, Dorn A, Beying N, Trapp O, Puchta H.

Plant Cell. 2019 Apr;31(4):775-790. doi: 10.1105/tpc.18.00824. Epub 2019 Feb 13.

PMID:
30760561
12.

CRISPR/Cas-mediated gene targeting in plants: finally a turn for the better for homologous recombination.

Huang TK, Puchta H.

Plant Cell Rep. 2019 Apr;38(4):443-453. doi: 10.1007/s00299-019-02379-0. Epub 2019 Jan 23. Review.

PMID:
30673818
13.

DNA Break Repair in Plants and Its Application for Genome Engineering.

Schmidt C, Pacher M, Puchta H.

Methods Mol Biol. 2019;1864:237-266. doi: 10.1007/978-1-4939-8778-8_17.

PMID:
30415341
14.

The CRISPR/Cas revolution continues: From efficient gene editing for crop breeding to plant synthetic biology.

Kumlehn J, Pietralla J, Hensel G, Pacher M, Puchta H.

J Integr Plant Biol. 2018 Dec;60(12):1127-1153. doi: 10.1111/jipb.12734. Review.

PMID:
30387552
15.

The topoisomerase 3α zinc-finger domain T1 of Arabidopsis thaliana is required for targeting the enzyme activity to Holliday junction-like DNA repair intermediates.

Dorn A, Röhrig S, Papp K, Schröpfer S, Hartung F, Knoll A, Puchta H.

PLoS Genet. 2018 Sep 17;14(9):e1007674. doi: 10.1371/journal.pgen.1007674. eCollection 2018 Sep.

16.

Application of CRISPR/Cas to Understand Cis- and Trans-Regulatory Elements in Plants.

Wolter F, Puchta H.

Methods Mol Biol. 2018;1830:23-40. doi: 10.1007/978-1-4939-8657-6_2. Review.

PMID:
30043362
17.

Transforming plant biology and breeding with CRISPR/Cas9, Cas12 and Cas13.

Schindele P, Wolter F, Puchta H.

FEBS Lett. 2018 Jun;592(12):1954-1967. doi: 10.1002/1873-3468.13073. Epub 2018 May 10. Review.

18.

The RecQ-like helicase HRQ1 is involved in DNA crosslink repair in Arabidopsis in a common pathway with the Fanconi anemia-associated nuclease FAN1 and the postreplicative repair ATPase RAD5A.

Röhrig S, Dorn A, Enderle J, Schindele A, Herrmann NJ, Knoll A, Puchta H.

New Phytol. 2018 Jun;218(4):1478-1490. doi: 10.1111/nph.15109. Epub 2018 Mar 25.

19.

The CRISPR/Cas revolution reaches the RNA world: Cas13, a new Swiss Army knife for plant biologists.

Wolter F, Puchta H.

Plant J. 2018 Jun;94(5):767-775. doi: 10.1111/tpj.13899. Epub 2018 May 4. Review.

20.

Efficient in planta gene targeting in Arabidopsis using egg cell-specific expression of the Cas9 nuclease of Staphylococcus aureus.

Wolter F, Klemm J, Puchta H.

Plant J. 2018 May;94(4):735-746. doi: 10.1111/tpj.13893. Epub 2018 Apr 17.

21.

Broadening the applicability of CRISPR/Cas9 in plants.

Puchta H.

Sci China Life Sci. 2018 Jan;61(1):126-127. doi: 10.1007/s11427-017-9249-3. Epub 2017 Dec 27. No abstract available.

PMID:
29285717
22.
23.

Development of Bag-1L as a therapeutic target in androgen receptor-dependent prostate cancer.

Cato L, Neeb A, Sharp A, Buzón V, Ficarro SB, Yang L, Muhle-Goll C, Kuznik NC, Riisnaes R, Nava Rodrigues D, Armant O, Gourain V, Adelmant G, Ntim EA, Westerling T, Dolling D, Rescigno P, Figueiredo I, Fauser F, Wu J, Rottenberg JT, Shatkina L, Ester C, Luy B, Puchta H, Troppmair J, Jung N, Bräse S, Strähle U, Marto JA, Nienhaus GU, Al-Lazikani B, Salvatella X, de Bono JS, Cato AC, Brown M.

Elife. 2017 Aug 10;6. pii: e27159. doi: 10.7554/eLife.27159.

24.

Towards CRISPR/Cas crops - bringing together genomics and genome editing.

Scheben A, Wolter F, Batley J, Puchta H, Edwards D.

New Phytol. 2017 Nov;216(3):682-698. doi: 10.1111/nph.14702. Epub 2017 Aug 1. Review.

25.

Endogenous sequence patterns predispose the repair modes of CRISPR/Cas9-induced DNA double-stranded breaks in Arabidopsis thaliana.

Vu GTH, Cao HX, Fauser F, Reiss B, Puchta H, Schubert I.

Plant J. 2017 Oct;92(1):57-67. doi: 10.1111/tpj.13634. Epub 2017 Aug 14.

26.

Live-cell CRISPR imaging in plants reveals dynamic telomere movements.

Dreissig S, Schiml S, Schindele P, Weiss O, Rutten T, Schubert V, Gladilin E, Mette MF, Puchta H, Houben A.

Plant J. 2017 Aug;91(4):565-573. doi: 10.1111/tpj.13601. Epub 2017 Jul 14.

27.

The DNA translocase RAD5A acts independently of the other main DNA repair pathways, and requires both its ATPase and RING domain for activity in Arabidopsis thaliana.

Klemm T, Mannuß A, Kobbe D, Knoll A, Trapp O, Dorn A, Puchta H.

Plant J. 2017 Aug;91(4):725-740. doi: 10.1111/tpj.13602. Epub 2017 Jun 25.

28.

CRISPR/Cas-Mediated In Planta Gene Targeting.

Schiml S, Fauser F, Puchta H.

Methods Mol Biol. 2017;1610:3-11. doi: 10.1007/978-1-4939-7003-2_1.

PMID:
28439853
29.
30.

From classical mutagenesis to nuclease-based breeding - directing natural DNA repair for a natural end-product.

Pacher M, Puchta H.

Plant J. 2017 May;90(4):819-833. doi: 10.1111/tpj.13469. Epub 2017 Mar 11.

31.

Applying CRISPR/Cas for genome engineering in plants: the best is yet to come.

Puchta H.

Curr Opin Plant Biol. 2017 Apr;36:1-8. doi: 10.1016/j.pbi.2016.11.011. Epub 2016 Nov 30. Review.

PMID:
27914284
32.

The RTR Complex Partner RMI2 and the DNA Helicase RTEL1 Are Both Independently Involved in Preserving the Stability of 45S rDNA Repeats in Arabidopsis thaliana.

Röhrig S, Schröpfer S, Knoll A, Puchta H.

PLoS Genet. 2016 Oct 19;12(10):e1006394. doi: 10.1371/journal.pgen.1006394. eCollection 2016 Oct.

33.

CRISPR/Cas-Mediated Site-Specific Mutagenesis in Arabidopsis thaliana Using Cas9 Nucleases and Paired Nickases.

Schiml S, Fauser F, Puchta H.

Methods Mol Biol. 2016;1469:111-22. doi: 10.1007/978-1-4939-4931-1_8.

PMID:
27557689
34.

AtRAD5A is a DNA translocase harboring a HIRAN domain which confers binding to branched DNA structures and is required for DNA repair in vivo.

Kobbe D, Kahles A, Walter M, Klemm T, Mannuss A, Knoll A, Focke M, Puchta H.

Plant J. 2016 Nov;88(4):521-530. doi: 10.1111/tpj.13283. Epub 2016 Sep 17.

35.

Repair of adjacent single-strand breaks is often accompanied by the formation of tandem sequence duplications in plant genomes.

Schiml S, Fauser F, Puchta H.

Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):7266-71. doi: 10.1073/pnas.1603823113. Epub 2016 Jun 15.

36.

Homology-based double-strand break-induced genome engineering in plants.

Steinert J, Schiml S, Puchta H.

Plant Cell Rep. 2016 Jul;35(7):1429-38. doi: 10.1007/s00299-016-1981-3. Epub 2016 Apr 15. Review.

PMID:
27084537
37.

Genome engineering using CRISPR/Cas: getting more versatile and more precise at the same time.

Puchta H.

Genome Biol. 2016 Mar 17;17:51. doi: 10.1186/s13059-016-0922-3.

38.

Revolutionizing plant biology: multiple ways of genome engineering by CRISPR/Cas.

Schiml S, Puchta H.

Plant Methods. 2016 Jan 28;12:8. doi: 10.1186/s13007-016-0103-0. eCollection 2016. Review.

39.

Using CRISPR/Cas in three dimensions: towards synthetic plant genomes, transcriptomes and epigenomes.

Puchta H.

Plant J. 2016 Jul;87(1):5-15. doi: 10.1111/tpj.13100. Epub 2016 Jan 11.

40.

Involvement of the Cohesin Cofactor PDS5 (SPO76) During Meiosis and DNA Repair in Arabidopsis thaliana.

Pradillo M, Knoll A, Oliver C, Varas J, Corredor E, Puchta H, Santos JL.

Front Plant Sci. 2015 Dec 1;6:1034. doi: 10.3389/fpls.2015.01034. eCollection 2015.

41.

Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus.

Steinert J, Schiml S, Fauser F, Puchta H.

Plant J. 2015 Dec;84(6):1295-305. doi: 10.1111/tpj.13078.

42.

The Translesion Polymerase ζ Has Roles Dependent on and Independent of the Nuclease MUS81 and the Helicase RECQ4A in DNA Damage Repair in Arabidopsis.

Kobbe S, Trapp O, Knoll A, Manuss A, Puchta H.

Plant Physiol. 2015 Dec;169(4):2718-29. doi: 10.1104/pp.15.00806. Epub 2015 Oct 16.

43.

Chromatin and development: a special issue.

Gutierrez C, Puchta H.

Plant J. 2015 Jul;83(1):1-3. doi: 10.1111/tpj.12909. No abstract available.

44.

Breaking DNA in plants: how I almost missed my personal breakthrough.

Puchta H.

Plant Biotechnol J. 2016 Feb;14(2):437-40. doi: 10.1111/pbi.12420. Epub 2015 Jun 10. No abstract available.

45.

The nuclease FAN1 is involved in DNA crosslink repair in Arabidopsis thaliana independently of the nuclease MUS81.

Herrmann NJ, Knoll A, Puchta H.

Nucleic Acids Res. 2015 Apr 20;43(7):3653-66. doi: 10.1093/nar/gkv208. Epub 2015 Mar 16.

46.

The Arabidopsis thaliana homolog of the helicase RTEL1 plays multiple roles in preserving genome stability.

Recker J, Knoll A, Puchta H.

Plant Cell. 2014 Dec;26(12):4889-902. doi: 10.1105/tpc.114.132472. Epub 2014 Dec 16.

47.
48.

Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana.

Fauser F, Schiml S, Puchta H.

Plant J. 2014 Jul;79(2):348-59. doi: 10.1111/tpj.12554. Epub 2014 Jun 17.

49.

DNA recombination in somatic plant cells: mechanisms and evolutionary consequences.

Knoll A, Fauser F, Puchta H.

Chromosome Res. 2014 Jun;22(2):191-201. doi: 10.1007/s10577-014-9415-y. Review.

PMID:
24788060
50.

Supplemental Content

Loading ...
Support Center