Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 41

1.

Early induction of autophagy in human fibroblasts after infection with human cytomegalovirus or herpes simplex virus 1.

McFarlane S, Aitken J, Sutherland JS, Nicholl MJ, Preston VG, Preston CM.

J Virol. 2011 May;85(9):4212-21. doi: 10.1128/JVI.02435-10. Epub 2011 Feb 16.

2.

Mutational analysis of the herpes simplex virus type 1 UL25 DNA packaging protein reveals regions that are important after the viral DNA has been packaged.

O'Hara M, Rixon FJ, Stow ND, Murray J, Murphy M, Preston VG.

J Virol. 2010 May;84(9):4252-63. doi: 10.1128/JVI.02442-09. Epub 2010 Feb 24.

3.

The UL15 protein of herpes simplex virus type 1 is necessary for the localization of the UL28 and UL33 proteins to viral DNA replication centres.

Higgs MR, Preston VG, Stow ND.

J Gen Virol. 2008 Jul;89(Pt 7):1709-15. doi: 10.1099/vir.0.2008/000448-0.

4.

The UL25 gene product of herpes simplex virus type 1 is involved in uncoating of the viral genome.

Preston VG, Murray J, Preston CM, McDougall IM, Stow ND.

J Virol. 2008 Jul;82(13):6654-66. doi: 10.1128/JVI.00257-08. Epub 2008 Apr 30.

5.

Structural characterization of the UL25 DNA-packaging protein from herpes simplex virus type 1.

Bowman BR, Welschhans RL, Jayaram H, Stow ND, Preston VG, Quiocho FA.

J Virol. 2006 Mar;80(5):2309-17.

6.
7.

Mutational analysis of the herpes simplex virus triplex protein VP19C.

Adamson WE, McNab D, Preston VG, Rixon FJ.

J Virol. 2006 Feb;80(3):1537-48.

8.
9.

Herpes simplex virus type 1 portal protein UL6 interacts with the putative terminase subunits UL15 and UL28.

White CA, Stow ND, Patel AH, Hughes M, Preston VG.

J Virol. 2003 Jun;77(11):6351-8.

11.

Interaction of the herpes simplex virus type 1 packaging protein UL15 with full-length and deleted forms of the UL28 protein.

Abbotts AP, Preston VG, Hughes M, Patel AH, Stow ND.

J Gen Virol. 2000 Dec;81(Pt 12):2999-3009.

PMID:
11086131
12.
13.
14.

Multiple interactions control the intracellular localization of the herpes simplex virus type 1 capsid proteins.

Rixon FJ, Addison C, McGregor A, Macnab SJ, Nicholson P, Preston VG, Tatman JD.

J Gen Virol. 1996 Sep;77 ( Pt 9):2251-60.

PMID:
8811025
15.
16.

The herpes simplex virus gene UL26 proteinase in the presence of the UL26.5 gene product promotes the formation of scaffold-like structures.

Preston VG, al-Kobaisi MF, McDougall IM, Rixon FJ.

J Gen Virol. 1994 Sep;75 ( Pt 9):2355-66.

PMID:
8077934
17.

Assembly of herpes simplex virus type 1 capsids using a panel of recombinant baculoviruses.

Tatman JD, Preston VG, Nicholson P, Elliott RM, Rixon FJ.

J Gen Virol. 1994 May;75 ( Pt 5):1101-13.

PMID:
8176371
18.

Localization of the herpes simplex virus type 1 major capsid protein VP5 to the cell nucleus requires the abundant scaffolding protein VP22a.

Nicholson P, Addison C, Cross AM, Kennard J, Preston VG, Rixon FJ.

J Gen Virol. 1994 May;75 ( Pt 5):1091-9.

PMID:
8176370
19.
20.

The herpes simplex virus UL33 gene product is required for the assembly of full capsids.

al-Kobaisi MF, Rixon FJ, McDougall I, Preston VG.

Virology. 1991 Jan;180(1):380-8.

PMID:
1845831
21.

Herpes simplex virus type 1 UL28 gene product is important for the formation of mature capsids.

Addison C, Rixon FJ, Preston VG.

J Gen Virol. 1990 Oct;71 ( Pt 10):2377-84.

PMID:
2172450
22.
24.

Reconstitution of herpes simplex virus type 1 ribonucleotide reductase activity from the large and small subunits.

Darling AJ, McKay EM, Ingemarson R, Preston VG.

Virus Genes. 1989 Mar;2(2):187-94.

PMID:
2541563
26.
27.

Ribonucleotide reductase encoded by herpes simplex virus is a determinant of the pathogenicity of the virus in mice and a valid antiviral target.

Cameron JM, McDougall I, Marsden HS, Preston VG, Ryan DM, Subak-Sharpe JH.

J Gen Virol. 1988 Oct;69 ( Pt 10):2607-12.

PMID:
2844969
28.

Mutational analysis of the herpes simplex virus type 1 trans-inducing factor Vmw65.

Ace CI, Dalrymple MA, Ramsay FH, Preston VG, Preston CM.

J Gen Virol. 1988 Oct;69 ( Pt 10):2595-605.

PMID:
2844968
29.

Cellular gene induction during herpes simplex virus infection can occur without viral protein synthesis.

Kemp LM, Preston CM, Preston VG, Latchman DS.

Nucleic Acids Res. 1986 Dec 9;14(23):9261-70.

30.
31.

[Characteristics and physical mapping of the gene of the herpes simplex virus that controls ribonucleotide reductase activity].

Dutia BM, Preston VG, Polfreiman JU, Subak-Sharpe JH.

Vopr Virusol. 1984 Nov-Dec;29(6):730-6. Russian. No abstract available.

PMID:
6099000
32.

Characterisation of a herpes simplex virus type 1 mutant which has a temperature-sensitive defect in penetration of cells and assembly of capsids.

Addison C, Rixon FJ, Palfreyman JW, O'Hara M, Preston VG.

Virology. 1984 Oct 30;138(2):246-59.

PMID:
6093367
33.

Identification of the herpes simplex virus type 1 gene encoding the dUTPase.

Preston VG, Fisher FB.

Virology. 1984 Oct 15;138(1):58-68.

PMID:
6149651
34.
35.
36.
37.
39.

Recombination in herpes simplex virus: mapping of mutations and analysis of intertypic recombinants.

Wilkie NM, Davison A, Chartrand P, Stow ND, Preston VG, Timbury MC.

Cold Spring Harb Symp Quant Biol. 1979;43 Pt 2:827-40. No abstract available.

PMID:
226325
40.

Physical mapping of herpes simplex virus-induced polypeptides.

Marsden HS, Stow ND, Preston VG, Timbury MC, Wilkie NM.

J Virol. 1978 Nov;28(2):624-42.

41.

Recombinants between herpes simplex virus types 1 and 2: analyses of genome structures and expression of immediate early polypeptides.

Preston VG, Davison AJ, Marsden HS, Timbury MC, Subak-Sharpe JH, Wilkie NM.

J Virol. 1978 Nov;28(2):499-517.

Supplemental Content

Loading ...
Support Center