Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 26

1.

Correction to: Production efficiency of the bacterial non-ribosomal peptide indigoidine relies on the respiratory metabolic state in S. cerevisiae.

Wehrs M, Prahl JP, Moon J, Li Y, Tanjore D, Keasling JD, Pray T, Mukhopadhyay A.

Microb Cell Fact. 2019 Dec 29;18(1):218. doi: 10.1186/s12934-019-1262-2.

2.

Methyl Ketones from Municipal Solid Waste Blends by One-Pot Ionic-Liquid Pretreatment, Saccharification, and Fermentation.

Yan J, Liang L, He Q, Li C, Xu F, Sun J, Goh EB, Konda NVSNM, Beller HR, Simmons BA, Pray TR, Thompson VS, Singh S, Sun N.

ChemSusChem. 2019 Sep 20;12(18):4313-4322. doi: 10.1002/cssc.201901084. Epub 2019 Aug 23.

PMID:
31278853
3.

Monoterpene production by the carotenogenic yeast Rhodosporidium toruloides.

Zhuang X, Kilian O, Monroe E, Ito M, Tran-Gymfi MB, Liu F, Davis RW, Mirsiaghi M, Sundstrom E, Pray T, Skerker JM, George A, Gladden JM.

Microb Cell Fact. 2019 Mar 18;18(1):54. doi: 10.1186/s12934-019-1099-8.

4.

Engineering Robust Production Microbes for Large-Scale Cultivation.

Wehrs M, Tanjore D, Eng T, Lievense J, Pray TR, Mukhopadhyay A.

Trends Microbiol. 2019 Jun;27(6):524-537. doi: 10.1016/j.tim.2019.01.006. Epub 2019 Feb 25. Review.

5.

Production efficiency of the bacterial non-ribosomal peptide indigoidine relies on the respiratory metabolic state in S. cerevisiae.

Wehrs M, Prahl JP, Moon J, Li Y, Tanjore D, Keasling JD, Pray T, Mukhopadhyay A.

Microb Cell Fact. 2018 Dec 13;17(1):193. doi: 10.1186/s12934-018-1045-1. Erratum in: Microb Cell Fact. 2019 Dec 29;18(1):218.

6.

Short-chain ketone production by engineered polyketide synthases in Streptomyces albus.

Yuzawa S, Mirsiaghi M, Jocic R, Fujii T, Masson F, Benites VT, Baidoo EEK, Sundstrom E, Tanjore D, Pray TR, George A, Davis RW, Gladden JM, Simmons BA, Katz L, Keasling JD.

Nat Commun. 2018 Nov 1;9(1):4569. doi: 10.1038/s41467-018-07040-0.

7.

Simultaneous application of predictive model and least cost formulation can substantially benefit biorefineries outside Corn Belt in United States: A case study in Florida.

Narani A, Konda NVSNM, Chen CS, Tachea F, Coffman P, Gardner J, Li C, Ray AE, Hartley DS, Simmons B, Pray TR, Tanjore D.

Bioresour Technol. 2019 Jan;271:218-227. doi: 10.1016/j.biortech.2018.09.103. Epub 2018 Sep 21.

PMID:
30273825
8.

Xylose induces cellulase production in Thermoascus aurantiacus.

Schuerg T, Prahl JP, Gabriel R, Harth S, Tachea F, Chen CS, Miller M, Masson F, He Q, Brown S, Mirshiaghi M, Liang L, Tom LM, Tanjore D, Sun N, Pray TR, Singer SW.

Biotechnol Biofuels. 2017 Nov 15;10:271. doi: 10.1186/s13068-017-0965-z. eCollection 2017.

9.

A bacterial pioneer produces cellulase complexes that persist through community succession.

Kolinko S, Wu YW, Tachea F, Denzel E, Hiras J, Gabriel R, B├Ącker N, Chan LJG, Eichorst SA, Frey D, Chen Q, Azadi P, Adams PD, Pray TR, Tanjore D, Petzold CJ, Gladden JM, Simmons BA, Singer SW.

Nat Microbiol. 2018 Jan;3(1):99-107. doi: 10.1038/s41564-017-0052-z. Epub 2017 Nov 6.

10.

Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts.

Yaegashi J, Kirby J, Ito M, Sun J, Dutta T, Mirsiaghi M, Sundstrom ER, Rodriguez A, Baidoo E, Tanjore D, Pray T, Sale K, Singh S, Keasling JD, Simmons BA, Singer SW, Magnuson JK, Arkin AP, Skerker JM, Gladden JM.

Biotechnol Biofuels. 2017 Oct 23;10:241. doi: 10.1186/s13068-017-0927-5. eCollection 2017.

11.

Predictive modeling to de-risk bio-based manufacturing by adapting to variability in lignocellulosic biomass supply.

Narani A, Coffman P, Gardner J, Li C, Ray AE, Hartley DS, Stettler A, Konda NVSNM, Simmons B, Pray TR, Tanjore D.

Bioresour Technol. 2017 Nov;243:676-685. doi: 10.1016/j.biortech.2017.06.156. Epub 2017 Jun 30.

PMID:
28709073
12.

Scale-up and process integration of sugar production by acidolysis of municipal solid waste/corn stover blends in ionic liquids.

Li C, Liang L, Sun N, Thompson VS, Xu F, Narani A, He Q, Tanjore D, Pray TR, Simmons BA, Singh S.

Biotechnol Biofuels. 2017 Jan 5;10:13. doi: 10.1186/s13068-016-0694-8. eCollection 2017.

13.

Blending municipal solid waste with corn stover for sugar production using ionic liquid process.

Sun N, Xu F, Sathitsuksanoh N, Thompson VS, Cafferty K, Li C, Tanjore D, Narani A, Pray TR, Simmons BA, Singh S.

Bioresour Technol. 2015 Jun;186:200-206. doi: 10.1016/j.biortech.2015.02.087. Epub 2015 Feb 26.

PMID:
25817030
14.

A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm.

MacLean LC, Tyliszczak T, Gilbert PU, Zhou D, Pray TJ, Onstott TC, Southam G.

Geobiology. 2008 Dec;6(5):471-80. doi: 10.1111/j.1472-4669.2008.00174.x.

PMID:
19076638
15.

Discovery of ADDL--targeting small molecule drugs for Alzheimer's disease.

Look GC, Jerecic J, Cherbavaz DB, Pray TR, Breach JC, Crosier WJ, Igoudin L, Hironaka CM, Lowe RM, McEntee M, Ruslim-Litrus L, Wu HM, Zhang S, Catalano SM, Goure WF, Summa D, Krafft GA.

Curr Alzheimer Res. 2007 Dec;4(5):562-7. Review.

PMID:
18220523
16.

A homogeneous FRET assay system for multiubiquitin chain assembly and disassembly.

Gururaja TL, Pray TR, Lowe R, Dong G, Huang J, Daniel-Issakani S, Payan DG.

Methods Enzymol. 2005;399:663-82.

PMID:
16338388
17.

Drug discovery in the ubiquitin regulatory pathway.

Wong BR, Parlati F, Qu K, Demo S, Pray T, Huang J, Payan DG, Bennett MK.

Drug Discov Today. 2003 Aug 15;8(16):746-54. Review.

PMID:
12944097
18.

Cell cycle regulatory E3 ubiquitin ligases as anticancer targets.

Pray TR, Parlati F, Huang J, Wong BR, Payan DG, Bennett MK, Issakani SD, Molineaux S, Demo SD.

Drug Resist Updat. 2002 Dec;5(6):249-58. Review.

PMID:
12531181
19.

A comparison of 2 circuit exercise training techniques for eliciting matched metabolic responses in persons with paraplegia.

Nash MS, Jacobs PL, Woods JM, Clark JE, Pray TA, Pumarejo AE.

Arch Phys Med Rehabil. 2002 Feb;83(2):201-9.

PMID:
11833023
20.

Conformational change coupling the dimerization and activation of KSHV protease.

Pray TR, Reiling KK, Demirjian BG, Craik CS.

Biochemistry. 2002 Feb 5;41(5):1474-82.

PMID:
11814340
22.
23.

Auto-inactivation by cleavage within the dimer interface of Kaposi's sarcoma-associated herpesvirus protease.

Pray TR, Nomura AM, Pennington MW, Craik CS.

J Mol Biol. 1999 Jun 4;289(2):197-203.

PMID:
10366498
24.
25.

The protease and the assembly protein of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8).

Unal A, Pray TR, Lagunoff M, Pennington MW, Ganem D, Craik CS.

J Virol. 1997 Sep;71(9):7030-8.

Supplemental Content

Support Center