Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 124

1.

Comparative studies of Escherichia coli strains using different glucose uptake systems: Metabolism and energetics.

Chen R, Yap WM, Postma PW, Bailey JE.

Biotechnol Bioeng. 1997 Dec 5;56(5):583-90. doi: 10.1002/(SICI)1097-0290(19971205)56:5<583::AID-BIT12>3.0.CO;2-D.

PMID:
18642279
2.

Protein production by Escherichia coli wild-type and DeltaptsG mutant strains with IPTG induction at the onset.

Picon A, de Mattos MJ, Postma PW.

J Ind Microbiol Biotechnol. 2008 Apr;35(4):213-8. doi: 10.1007/s10295-007-0285-6. Epub 2008 Jan 8.

PMID:
18188625
3.

How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria.

Deutscher J, Francke C, Postma PW.

Microbiol Mol Biol Rev. 2006 Dec;70(4):939-1031. Review. Erratum in: Microbiol Mol Biol Rev. 2008 Sep;72(3):555.

4.

Reducing the glucose uptake rate in Escherichia coli affects growth rate but not protein production.

Picon A, Teixeira de Mattos MJ, Postma PW.

Biotechnol Bioeng. 2005 Apr 20;90(2):191-200.

PMID:
15759256
5.

Why the phosphotransferase system of Escherichia coli escapes diffusion limitation.

Francke C, Postma PW, Westerhoff HV, Blom JG, Peletier MA.

Biophys J. 2003 Jul;85(1):612-22.

6.

Engineering of primary carbon metabolism for improved antibiotic production in Streptomyces lividans.

Butler MJ, Bruheim P, Jovetic S, Marinelli F, Postma PW, Bibb MJ.

Appl Environ Microbiol. 2002 Oct;68(10):4731-9.

7.

Cooperativity in signal transfer through the Uhp system of Escherichia coli.

Verhamme DT, Postma PW, Crielaard W, Hellingwerf KJ.

J Bacteriol. 2002 Aug;184(15):4205-10.

8.

Carbon flux distribution in antibiotic-producing chemostat cultures of Streptomyces lividans.

Avignone Rossa C, White J, Kuiper A, Postma PW, Bibb M, Teixeira de Mattos MJ.

Metab Eng. 2002 Apr;4(2):138-50.

PMID:
12009793
10.

Investigation of in vivo cross-talk between key two-component systems of Escherichia coli.

Verhamme DT, Arents JC, Postma PW, Crielaard W, Hellingwerf KJ.

Microbiology. 2002 Jan;148(Pt 1):69-78.

PMID:
11782500
11.

Glucose-6-phosphate-dependent phosphoryl flow through the Uhp two-component regulatory system.

Verhamme DT, Arents JC, Postma PW, Crielaard W, Hellingwerf KJ.

Microbiology. 2001 Dec;147(Pt 12):3345-52.

PMID:
11739766
12.

Autoamplification of a two-component regulatory system results in "learning" behavior.

Hoffer SM, Westerhoff HV, Hellingwerf KJ, Postma PW, Tommassen J.

J Bacteriol. 2001 Aug;183(16):4914-7.

13.
14.
16.

Analysis of a ptsH homologue from Streptomyces coelicolor A3(2).

Butler MJ, Deutscher J, Postma PW, Wilson TJ, Galinier A, Bibb MJ.

FEMS Microbiol Lett. 1999 Aug 15;177(2):279-88.

18.

Autoregulation of lactose uptake through the LacY permease by enzyme IIAGlc of the PTS in Escherichia coli K-12.

Hogema BM, Arents JC, Bader R, Postma PW.

Mol Microbiol. 1999 Mar;31(6):1825-33.

19.
20.
21.

Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of enzyme IIAGlc.

Hogema BM, Arents JC, Bader R, Eijkemans K, Yoshida H, Takahashi H, Aiba H, Postma PW.

Mol Microbiol. 1998 Nov;30(3):487-98.

22.
23.

Implications of macromolecular crowding for signal transduction and metabolite channeling.

Rohwer JM, Postma PW, Kholodenko BN, Westerhoff HV.

Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10547-52.

24.

Limits to inducer exclusion: inhibition of the bacterial phosphotransferase system by glycerol kinase.

Rohwer JM, Bader R, Westerhoff HV, Postma PW.

Mol Microbiol. 1998 Jul;29(2):641-52.

25.
26.

Inducer exclusion by glucose 6-phosphate in Escherichia coli.

Hogema BM, Arents JC, Bader R, Eijkemans K, Inada T, Aiba H, Postma PW.

Mol Microbiol. 1998 May;28(4):755-65.

27.

Cloning, sequence analysis, and characterization of the genes involved in isoprimeverose metabolism in Lactobacillus pentosus.

Chaillou S, Lokman BC, Leer RJ, Posthuma C, Postma PW, Pouwels PH.

J Bacteriol. 1998 May;180(9):2312-20.

28.

Metabolic consequences of phosphotransferase (PTS) mutation in a phenylalanine-producing recombinant Escherichia coli.

Chen R, Hatzimanikatis V, Yap WM, Postma PW, Bailey JE.

Biotechnol Prog. 1997 Nov-Dec;13(6):768-75.

PMID:
9413135
29.

Escherichia coli is unable to produce pyrroloquinoline quinone (PQQ).

Matsushita K, Arents JC, Bader R, Yamada M, Adachi O, Postma PW.

Microbiology. 1997 Oct;143 ( Pt 10):3149-56.

PMID:
9353919
30.

Regulation of expression of the Lactobacillus pentosus xylAB operon.

Lokman BC, Heerikhuisen M, Leer RJ, van den Broek A, Borsboom Y, Chaillou S, Postma PW, Pouwels PH.

J Bacteriol. 1997 Sep;179(17):5391-7.

31.

BglF, the sensor of the E. coli bgl system, uses the same site to phosphorylate both a sugar and a regulatory protein.

Chen Q, Arents JC, Bader R, Postma PW, Amster-Choder O.

EMBO J. 1997 Aug 1;16(15):4617-27.

32.

The malEFG gene cluster of Streptomyces coelicolor A3(2): characterization, disruption and transcriptional analysis.

van Wezel GP, White J, Bibb MJ, Postma PW.

Mol Gen Genet. 1997 May 20;254(5):604-8.

PMID:
9197422
33.

Catabolite repression by glucose 6-phosphate, gluconate and lactose in Escherichia coli.

Hogema BM, Arents JC, Inada T, Aiba H, van Dam K, Postma PW.

Mol Microbiol. 1997 May;24(4):857-67.

35.

Quantitative conversion of glucose into glucose 6-phosphate by intact Escherichia coli cells.

van der Zee JR, Postma PW, Hellingwerf KJ.

Biotechnol Appl Biochem. 1996 Dec;24(3):225-30.

PMID:
8969452
36.

Cloning of the maoA gene that encodes aromatic amine oxidase of Escherichia coli W3350 and characterization of the overexpressed enzyme.

Steinebach V, Benen JA, Bader R, Postma PW, De Vries S, Duine JA.

Eur J Biochem. 1996 May 1;237(3):584-91.

37.
38.

Isolation and characterization of a mutation that alters the substrate specificity of the Escherichia coli glucose permease.

Begley GS, Warner KA, Arents JC, Postma PW, Jacobson GR.

J Bacteriol. 1996 Feb;178(3):940-2.

39.

Changes in the cellular energy state affect the activity of the bacterial phosphotransferase system.

Rohwer JM, Jensen PR, Shinohara Y, Postma PW, Westerhoff HV.

Eur J Biochem. 1996 Jan 15;235(1-2):225-30.

40.

Synthesis of pyrroloquinoline quinone in vivo and in vitro and detection of an intermediate in the biosynthetic pathway.

Velterop JS, Sellink E, Meulenberg JJ, David S, Bulder I, Postma PW.

J Bacteriol. 1995 Sep;177(17):5088-98.

41.

Non-physiological expression of UhpT does not lead to uncontrolled leakage of sugar phosphates out of Escherichia coli cells.

van de Zee JR, Postma PW, Hellingwerf KJ.

FEMS Microbiol Lett. 1995 Aug 15;131(1):21-6.

PMID:
7557306
42.
43.

Signal transduction in bacteria: phospho-neural network(s) in Escherichia coli?

Hellingwerf KJ, Postma PW, Tommassen J, Westerhoff HV.

FEMS Microbiol Rev. 1995 Jul;16(4):309-21. Review.

PMID:
7654406
44.

Control of glucose metabolism by the enzymes of the glucose phosphotransferase system in Salmonella typhimurium.

van der Vlag J, van't Hof R, van Dam K, Postma PW.

Eur J Biochem. 1995 May 15;230(1):170-82.

45.

A versatile vector for controlled expression of genes in Escherichia coli and Salmonella typhimurium.

Velterop JS, Dijkhuizen MA, van 't Hof R, Postma PW.

Gene. 1995 Feb 3;153(1):63-5.

PMID:
7883186
48.
49.

Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria.

Postma PW, Lengeler JW, Jacobson GR.

Microbiol Rev. 1993 Sep;57(3):543-94. Review.

50.

Cloning and nucleotide sequence of the ptsG gene of Bacillus subtilis.

Zagorec M, Postma PW.

Mol Gen Genet. 1992 Aug;234(2):325-8.

PMID:
1508157

Supplemental Content

Loading ...
Support Center