Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 106

1.

A novel mechanism for the prevention of transcription replication conflicts.

Canal B, Duch A, Posas F, de Nadal E.

Mol Cell Oncol. 2018 Mar 28;5(3):e1451233. doi: 10.1080/23723556.2018.1451233. eCollection 2018.

PMID:
30250903
2.

Phosphorylation and Proteasome Recognition of the mRNA-Binding Protein Cth2 Facilitates Yeast Adaptation to Iron Deficiency.

Romero AM, Martínez-Pastor M, Du G, Solé C, Carlos M, Vergara SV, Sanvisens N, Wohlschlegel JA, Toczyski DP, Posas F, de Nadal E, Martínez-Pastor MT, Thiele DJ, Puig S.

MBio. 2018 Sep 18;9(5). pii: e01694-18. doi: 10.1128/mBio.01694-18.

3.

Timing of gene expression in a cell-fate decision system.

Aymoz D, Solé C, Pierre JJ, Schmitt M, de Nadal E, Posas F, Pelet S.

Mol Syst Biol. 2018 Apr 25;14(4):e8024. doi: 10.15252/msb.20178024.

4.

Plug-and-Play Multicellular Circuits with Time-Dependent Dynamic Responses.

Urrios A, Gonzalez-Flo E, Canadell D, de Nadal E, Macia J, Posas F.

ACS Synth Biol. 2018 Apr 20;7(4):1095-1104. doi: 10.1021/acssynbio.7b00463. Epub 2018 Apr 2.

PMID:
29584406
5.

Osteoblast-Secreted Factors Mediate Dormancy of Metastatic Prostate Cancer in the Bone via Activation of the TGFβRIII-p38MAPK-pS249/T252RB Pathway.

Yu-Lee LY, Yu G, Lee YC, Lin SC, Pan J, Pan T, Yu KJ, Liu B, Creighton CJ, Rodriguez-Canales J, Villalobos PA, Wistuba II, de Nadal E, Posas F, Gallick GE, Lin SH.

Cancer Res. 2018 Jun 1;78(11):2911-2924. doi: 10.1158/0008-5472.CAN-17-1051. Epub 2018 Mar 7.

PMID:
29514796
6.

Multiple signaling kinases target Mrc1 to prevent genomic instability triggered by transcription-replication conflicts.

Duch A, Canal B, Barroso SI, García-Rubio M, Seisenbacher G, Aguilera A, de Nadal E, Posas F.

Nat Commun. 2018 Jan 25;9(1):379. doi: 10.1038/s41467-017-02756-x.

7.

Activation of the Hog1 MAPK by the Ssk2/Ssk22 MAP3Ks, in the absence of the osmosensors, is not sufficient to trigger osmostress adaptation in Saccharomyces cerevisiae.

Vázquez-Ibarra A, Subirana L, Ongay-Larios L, Kawasaki L, Rojas-Ortega E, Rodríguez-González M, de Nadal E, Posas F, Coria R.

FEBS J. 2018 Mar;285(6):1079-1096. doi: 10.1111/febs.14385. Epub 2018 Jan 30.

PMID:
29341399
8.

Regulation of transcription elongation in response to osmostress.

Silva A, Cavero S, Begley V, Solé C, Böttcher R, Chávez S, Posas F, de Nadal E.

PLoS Genet. 2017 Nov 20;13(11):e1007090. doi: 10.1371/journal.pgen.1007090. eCollection 2017 Nov.

9.

The Hog1p kinase regulates Aft1p transcription factor to control iron accumulation.

Martins TS, Pereira C, Canadell D, Vilaça R, Teixeira V, Moradas-Ferreira P, de Nadal E, Posas F, Costa V.

Biochim Biophys Acta Mol Cell Biol Lipids. 2018 Jan;1863(1):61-70. doi: 10.1016/j.bbalip.2017.10.001. Epub 2017 Oct 12.

PMID:
29032057
10.

Yeast Cip1 is activated by environmental stress to inhibit Cdk1-G1 cyclins via Mcm1 and Msn2/4.

Chang YL, Tseng SF, Huang YC, Shen ZJ, Hsu PH, Hsieh MH, Yang CW, Tognetti S, Canal B, Subirana L, Wang CW, Chen HT, Lin CY, Posas F, Teng SC.

Nat Commun. 2017 Jul 4;8(1):56. doi: 10.1038/s41467-017-00080-y.

11.

A Clb/Cdk1-mediated regulation of Fkh2 synchronizes CLB expression in the budding yeast cell cycle.

Linke C, Chasapi A, González-Novo A, Al Sawad I, Tognetti S, Klipp E, Loog M, Krobitsch S, Posas F, Xenarios I, Barberis M.

NPJ Syst Biol Appl. 2017 Mar 6;3:7. doi: 10.1038/s41540-017-0008-1. eCollection 2017.

12.

Interaction Dynamics Determine Signaling and Output Pathway Responses.

Stojanovski K, Ferrar T, Benisty H, Uschner F, Delgado J, Jimenez J, Solé C, de Nadal E, Klipp E, Posas F, Serrano L, Kiel C.

Cell Rep. 2017 Apr 4;19(1):136-149. doi: 10.1016/j.celrep.2017.03.029.

13.

Role of the Sln1-phosphorelay pathway in the response to hyperosmotic stress in the yeast Kluyveromyces lactis.

Rodríguez-González M, Kawasaki L, Velázquez-Zavala N, Domínguez-Martín E, Trejo-Medecigo A, Martagón N, Espinoza-Simón E, Vázquez-Ibarra A, Ongay-Larios L, Georgellis D, de Nadal E, Posas F, Coria R.

Mol Microbiol. 2017 Jun;104(5):822-836. doi: 10.1111/mmi.13664. Epub 2017 Mar 28.

PMID:
28295748
14.

An RB insensitive to CDK regulation.

Joaquin M, de Nadal E, Posas F.

Mol Cell Oncol. 2016 Dec 14;4(1):e1268242. doi: 10.1080/23723556.2016.1268242. eCollection 2017.

15.

Untargeted metabolomics unravels functionalities of phosphorylation sites in Saccharomyces cerevisiae.

Raguz Nakic Z, Seisenbacher G, Posas F, Sauer U.

BMC Syst Biol. 2016 Nov 15;10(1):104.

16.

Evolution of protein phosphorylation across 18 fungal species.

Studer RA, Rodriguez-Mias RA, Haas KM, Hsu JI, Viéitez C, Solé C, Swaney DL, Stanford LB, Liachko I, Böttcher R, Dunham MJ, de Nadal E, Posas F, Beltrao P, Villén J.

Science. 2016 Oct 14;354(6309):229-232.

PMID:
27738172
17.

The N-Terminal Phosphorylation of RB by p38 Bypasses Its Inactivation by CDKs and Prevents Proliferation in Cancer Cells.

Gubern A, Joaquin M, Marquès M, Maseres P, Garcia-Garcia J, Amat R, González-Nuñez D, Oliva B, Real FX, de Nadal E, Posas F.

Mol Cell. 2016 Oct 6;64(1):25-36. doi: 10.1016/j.molcel.2016.08.015. Epub 2016 Sep 15.

18.

A Synthetic Multicellular Memory Device.

Urrios A, Macia J, Manzoni R, Conde N, Bonforti A, de Nadal E, Posas F, Solé R.

ACS Synth Biol. 2016 Aug 19;5(8):862-73. doi: 10.1021/acssynbio.5b00252. Epub 2016 Aug 8.

PMID:
27439436
19.

3D-printing of transparent bio-microfluidic devices in PEG-DA.

Urrios A, Parra-Cabrera C, Bhattacharjee N, Gonzalez-Suarez AM, Rigat-Brugarolas LG, Nallapatti U, Samitier J, DeForest CA, Posas F, Garcia-Cordero JL, Folch A.

Lab Chip. 2016 Jun 21;16(12):2287-94. doi: 10.1039/c6lc00153j. Epub 2016 May 24.

20.

Synthetic biology: insights into biological computation.

Manzoni R, Urrios A, Velazquez-Garcia S, de Nadal E, Posas F.

Integr Biol (Camb). 2016 Apr 18;8(4):518-32. doi: 10.1039/c5ib00274e. Epub 2016 Apr 13. Review.

PMID:
27074335
21.

Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia.

Macia J, Manzoni R, Conde N, Urrios A, de Nadal E, Solé R, Posas F.

PLoS Comput Biol. 2016 Feb 1;12(2):e1004685. doi: 10.1371/journal.pcbi.1004685. eCollection 2016 Feb.

22.

Predictors of Permanent Pacemaker Insertion Following Transcatheter Aortic Valve Replacement With the CoreValve Revalving System Based on Computed Tomography Analysis: An Asian Multicenter Registry Study.

Kim WJ, Ko YG, Han S, Kim YH, Dy TC, Posas FE, Lee MK, Kim HS, Hong MK, Jang Y, Grube E, Park SJ.

J Invasive Cardiol. 2015 Jul;27(7):334-40.

23.

Osmostress-induced gene expression--a model to understand how stress-activated protein kinases (SAPKs) regulate transcription.

de Nadal E, Posas F.

FEBS J. 2015 Sep;282(17):3275-85. doi: 10.1111/febs.13323. Epub 2015 Jun 10. Review.

24.

H3K4 monomethylation dictates nucleosome dynamics and chromatin remodeling at stress-responsive genes.

Nadal-Ribelles M, Mas G, Millán-Zambrano G, Solé C, Ammerer G, Chávez S, Posas F, de Nadal E.

Nucleic Acids Res. 2015 May 26;43(10):4937-49. doi: 10.1093/nar/gkv220. Epub 2015 Mar 26.

25.

Parallel feedback loops control the basal activity of the HOG MAPK signaling cascade.

Sharifian H, Lampert F, Stojanovski K, Regot S, Vaga S, Buser R, Lee SS, Koeppl H, Posas F, Pelet S, Peter M.

Integr Biol (Camb). 2015 Apr;7(4):412-22. doi: 10.1039/c4ib00299g.

PMID:
25734609
26.

Hog1 targets Whi5 and Msa1 transcription factors to downregulate cyclin expression upon stress.

González-Novo A, Jiménez J, Clotet J, Nadal-Ribelles M, Cavero S, de Nadal E, Posas F.

Mol Cell Biol. 2015 May;35(9):1606-18. doi: 10.1128/MCB.01279-14. Epub 2015 Mar 2.

27.

A novel role for lncRNAs in cell cycle control during stress adaptation.

Solé C, Nadal-Ribelles M, de Nadal E, Posas F.

Curr Genet. 2015 Aug;61(3):299-308. doi: 10.1007/s00294-014-0453-y. Epub 2014 Sep 28. Review.

28.

Cell cycle control and HIV-1 susceptibility are linked by CDK6-dependent CDK2 phosphorylation of SAMHD1 in myeloid and lymphoid cells.

Pauls E, Ruiz A, Badia R, Permanyer M, Gubern A, Riveira-Muñoz E, Torres-Torronteras J, Alvarez M, Mothe B, Brander C, Crespo M, Menéndez-Arias L, Clotet B, Keppler OT, Martí R, Posas F, Ballana E, Esté JA.

J Immunol. 2014 Aug 15;193(4):1988-97. doi: 10.4049/jimmunol.1400873. Epub 2014 Jul 11.

29.

Control of Cdc28 CDK1 by a stress-induced lncRNA.

Nadal-Ribelles M, Solé C, Xu Z, Steinmetz LM, de Nadal E, Posas F.

Mol Cell. 2014 Feb 20;53(4):549-61. doi: 10.1016/j.molcel.2014.01.006. Epub 2014 Feb 6.

30.

Dealing with transcriptional outbursts during S phase to protect genomic integrity.

Duch A, de Nadal E, Posas F.

J Mol Biol. 2013 Nov 29;425(23):4745-55. doi: 10.1016/j.jmb.2013.08.019. Epub 2013 Sep 7. Review.

31.

Initiation of the transcriptional response to hyperosmotic shock correlates with the potential for volume recovery.

Geijer C, Medrala-Klein D, Petelenz-Kurdziel E, Ericsson A, Smedh M, Andersson M, Goksör M, Nadal-Ribelles M, Posas F, Krantz M, Nordlander B, Hohmann S.

FEBS J. 2013 Aug;280(16):3854-67. doi: 10.1111/febs.12382. Epub 2013 Jul 5.

32.

The Hog1 stress-activated protein kinase targets nucleoporins to control mRNA export upon stress.

Regot S, de Nadal E, Rodríguez-Navarro S, González-Novo A, Pérez-Fernandez J, Gadal O, Seisenbacher G, Ammerer G, Posas F.

J Biol Chem. 2013 Jun 14;288(24):17384-98. doi: 10.1074/jbc.M112.444042. Epub 2013 May 3. Erratum in: J Biol Chem. 2015 Jan 23;290(4):2301.

33.

Coordinated control of replication and transcription by a SAPK protects genomic integrity.

Duch A, Felipe-Abrio I, Barroso S, Yaakov G, García-Rubio M, Aguilera A, de Nadal E, Posas F.

Nature. 2013 Jan 3;493(7430):116-9. doi: 10.1038/nature11675. Epub 2012 Nov 25.

PMID:
23178807
34.

Hog1 bypasses stress-mediated down-regulation of transcription by RNA polymerase II redistribution and chromatin remodeling.

Nadal-Ribelles M, Conde N, Flores O, González-Vallinas J, Eyras E, Orozco M, de Nadal E, Posas F.

Genome Biol. 2012 Nov 18;13(11):R106. doi: 10.1186/gb-2012-13-11-r106.

35.

Response to hyperosmotic stress.

Saito H, Posas F.

Genetics. 2012 Oct;192(2):289-318. doi: 10.1534/genetics.112.140863. Review.

36.

The Hog1 SAPK controls the Rtg1/Rtg3 transcriptional complex activity by multiple regulatory mechanisms.

Ruiz-Roig C, Noriega N, Duch A, Posas F, de Nadal E.

Mol Biol Cell. 2012 Nov;23(21):4286-96. doi: 10.1091/mbc.E12-04-0289. Epub 2012 Sep 5.

37.

A novel G1 checkpoint mediated by the p57 CDK inhibitor and p38 SAPK promotes cell survival upon stress.

Joaquin M, Gubern A, Posas F.

Cell Cycle. 2012 Sep 15;11(18):3339-40. doi: 10.4161/cc.21840. Epub 2012 Aug 23.

38.

Validation of regulated protein phosphorylation events in yeast by quantitative mass spectrometry analysis of purified proteins.

Reiter W, Anrather D, Dohnal I, Pichler P, Veis J, Grøtli M, Posas F, Ammerer G.

Proteomics. 2012 Oct;12(19-20):3030-43. doi: 10.1002/pmic.201200185. Epub 2012 Sep 19.

39.

The p38 and Hog1 SAPKs control cell cycle progression in response to environmental stresses.

Duch A, de Nadal E, Posas F.

FEBS Lett. 2012 Aug 31;586(18):2925-31. doi: 10.1016/j.febslet.2012.07.034. Epub 2012 Jul 20. Review.

40.

The p57 CDKi integrates stress signals into cell-cycle progression to promote cell survival upon stress.

Joaquin M, Gubern A, González-Nuñez D, Josué Ruiz E, Ferreiro I, de Nadal E, Nebreda AR, Posas F.

EMBO J. 2012 Jun 29;31(13):2952-64. doi: 10.1038/emboj.2012.122. Epub 2012 May 8.

41.

Distributed computation: the new wave of synthetic biology devices.

Macía J, Posas F, Solé RV.

Trends Biotechnol. 2012 Jun;30(6):342-9. doi: 10.1016/j.tibtech.2012.03.006. Epub 2012 Apr 18. Review.

PMID:
22516742
42.

Sir2 plays a key role in cell fate determination upon SAPK activation.

Vendrell A, Posas F.

Aging (Albany NY). 2011 Dec;3(12):1163-8.

43.

Controlling gene expression in response to stress.

de Nadal E, Ammerer G, Posas F.

Nat Rev Genet. 2011 Nov 3;12(12):833-45. doi: 10.1038/nrg3055. Review.

PMID:
22048664
44.

Sic1 plays a role in timing and oscillatory behaviour of B-type cyclins.

Barberis M, Linke C, Adrover MÀ, González-Novo A, Lehrach H, Krobitsch S, Posas F, Klipp E.

Biotechnol Adv. 2012 Jan-Feb;30(1):108-30. doi: 10.1016/j.biotechadv.2011.09.004. Epub 2011 Sep 18.

PMID:
21963604
45.

Time-dependent quantitative multicomponent control of the G₁-S network by the stress-activated protein kinase Hog1 upon osmostress.

Adrover MÀ, Zi Z, Duch A, Schaber J, González-Novo A, Jimenez J, Nadal-Ribelles M, Clotet J, Klipp E, Posas F.

Sci Signal. 2011 Sep 27;4(192):ra63. doi: 10.1126/scisignal.2002204. Erratum in: Sci Signal. 2011 Nov 1;4(197):er5.

46.

Sir2 histone deacetylase prevents programmed cell death caused by sustained activation of the Hog1 stress-activated protein kinase.

Vendrell A, Martínez-Pastor M, González-Novo A, Pascual-Ahuir A, Sinclair DA, Proft M, Posas F.

EMBO Rep. 2011 Sep 30;12(10):1062-8. doi: 10.1038/embor.2011.154.

47.

Control of Ubp3 ubiquitin protease activity by the Hog1 SAPK modulates transcription upon osmostress.

Solé C, Nadal-Ribelles M, Kraft C, Peter M, Posas F, de Nadal E.

EMBO J. 2011 Jul 8;30(16):3274-84. doi: 10.1038/emboj.2011.227.

48.

Design, synthesis and characterization of a highly effective inhibitor for analog-sensitive (as) kinases.

Klein M, Morillas M, Vendrell A, Brive L, Gebbia M, Wallace IM, Giaever G, Nislow C, Posas F, Grøtli M.

PLoS One. 2011;6(6):e20789. doi: 10.1371/journal.pone.0020789. Epub 2011 Jun 17.

49.

Transient activation of the HOG MAPK pathway regulates bimodal gene expression.

Pelet S, Rudolf F, Nadal-Ribelles M, de Nadal E, Posas F, Peter M.

Science. 2011 May 6;332(6030):732-5. doi: 10.1126/science.1198851.

50.

The stress-activated protein kinase Hog1 develops a critical role after resting state.

Escoté X, Miranda M, Rodríguez-Porrata B, Mas A, Cordero R, Posas F, Vendrell J.

Mol Microbiol. 2011 Apr;80(2):423-35. doi: 10.1111/j.1365-2958.2011.07585.x. Epub 2011 Mar 3.

Supplemental Content

Support Center