Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 133

1.

Triphenylphosphonium-Derived Protein Sulfenic Acid Trapping Agents: Synthesis, Reactivity, and Effect on Mitochondrial Function.

Li Z, Forshaw TE, Holmila RJ, Vance SA, Wu H, Poole LB, Furdui CM, King SB.

Chem Res Toxicol. 2019 Mar 18;32(3):526-534. doi: 10.1021/acs.chemrestox.8b00385. Epub 2019 Mar 4.

PMID:
30784263
2.

Chaperone activation and client binding of a 2-cysteine peroxiredoxin.

Teixeira F, Tse E, Castro H, Makepeace KAT, Meinen BA, Borchers CH, Poole LB, Bardwell JC, Tomás AM, Southworth DR, Jakob U.

Nat Commun. 2019 Feb 8;10(1):659. doi: 10.1038/s41467-019-08565-8.

3.

Differential peroxiredoxin hyperoxidation regulates MAP kinase signaling in human articular chondrocytes.

Collins JA, Wood ST, Bolduc JA, Nurmalasari NPD, Chubinskaya S, Poole LB, Furdui CM, Nelson KJ, Loeser RF.

Free Radic Biol Med. 2019 Jan 9;134:139-152. doi: 10.1016/j.freeradbiomed.2019.01.005. [Epub ahead of print]

PMID:
30639614
4.

Peroxiredoxins in Cancer and Response to Radiation Therapies.

Forshaw TE, Holmila R, Nelson KJ, Lewis JE, Kemp ML, Tsang AW, Poole LB, Lowther WT, Furdui CM.

Antioxidants (Basel). 2019 Jan 1;8(1). pii: E11. doi: 10.3390/antiox8010011. Review.

5.

Redox proteins.

Poole LB, Thorpe C.

Protein Sci. 2019 Jan;28(1):5-7. doi: 10.1002/pro.3555. No abstract available.

PMID:
30461094
6.

NOX4 (NADPH Oxidase 4) and Poldip2 (Polymerase δ-Interacting Protein 2) Induce Filamentous Actin Oxidation and Promote Its Interaction With Vinculin During Integrin-Mediated Cell Adhesion.

Vukelic S, Xu Q, Seidel-Rogol B, Faidley EA, Dikalova AE, Hilenski LL, Jorde U, Poole LB, Lassègue B, Zhang G, Griendling KK.

Arterioscler Thromb Vasc Biol. 2018 Oct;38(10):2423-2434. doi: 10.1161/ATVBAHA.118.311668.

PMID:
30354218
7.

H2O2 oxidation of cysteine residues in c-Jun N-terminal kinase 2 (JNK2) contributes to redox regulation in human articular chondrocytes.

Nelson KJ, Bolduc JA, Wu H, Collins JA, Burke EA, Reisz JA, Klomsiri C, Wood ST, Yammani RR, Poole LB, Furdui CM, Loeser RF.

J Biol Chem. 2018 Oct 19;293(42):16376-16389. doi: 10.1074/jbc.RA118.004613. Epub 2018 Sep 6.

PMID:
30190325
8.

SVM-SulfoSite: A support vector machine based predictor for sulfenylation sites.

Al-Barakati HJ, McConnell EW, Hicks LM, Poole LB, Newman RH, Kc DB.

Sci Rep. 2018 Jul 26;8(1):11288. doi: 10.1038/s41598-018-29126-x.

9.

Novel hyperoxidation resistance motifs in 2-Cys peroxiredoxins.

Bolduc JA, Nelson KJ, Haynes AC, Lee J, Reisz JA, Graff AH, Clodfelter JE, Parsonage D, Poole LB, Furdui CM, Lowther WT.

J Biol Chem. 2018 Jul 27;293(30):11901-11912. doi: 10.1074/jbc.RA117.001690. Epub 2018 Jun 8.

PMID:
29884768
10.

Mitochondria-targeted Probes for Imaging Protein Sulfenylation.

Holmila RJ, Vance SA, Chen X, Wu H, Shukla K, Bharadwaj MS, Mims J, Wary Z, Marrs G, Singh R, Molina AJ, Poole LB, King SB, Furdui CM.

Sci Rep. 2018 Apr 27;8(1):6635. doi: 10.1038/s41598-018-24493-x.

11.

Differential Kinetics of Two-Cysteine Peroxiredoxin Disulfide Formation Reveal a Novel Model for Peroxide Sensing.

Portillo-Ledesma S, Randall LM, Parsonage D, Dalla Rizza J, Karplus PA, Poole LB, Denicola A, Ferrer-Sueta G.

Biochemistry. 2018 Jun 19;57(24):3416-3424. doi: 10.1021/acs.biochem.8b00188. Epub 2018 Mar 30.

12.

The Oxidative State of Cysteine Thiol 144 Regulates the SIRT6 Glucose Homeostat.

Long D, Wu H, Tsang AW, Poole LB, Yoza BK, Wang X, Vachharajani V, Furdui CM, McCall CE.

Sci Rep. 2017 Sep 8;7(1):11005. doi: 10.1038/s41598-017-11388-6.

13.

Endogenous, regulatory cysteine sulfenylation of ERK kinases in response to proliferative signals.

Keyes JD, Parsonage D, Yammani RD, Rogers LC, Kesty C, Furdui CM, Nelson KJ, Poole LB.

Free Radic Biol Med. 2017 Nov;112:534-543. doi: 10.1016/j.freeradbiomed.2017.08.018. Epub 2017 Aug 24.

14.

Discovery of Heteroaromatic Sulfones As a New Class of Biologically Compatible Thiol-Selective Reagents.

Chen X, Wu H, Park CM, Poole TH, Keceli G, Devarie-Baez NO, Tsang AW, Lowther WT, Poole LB, King SB, Xian M, Furdui CM.

ACS Chem Biol. 2017 Aug 18;12(8):2201-2208. doi: 10.1021/acschembio.7b00444. Epub 2017 Jul 19.

15.

The SAMHD1 dNTP Triphosphohydrolase Is Controlled by a Redox Switch.

Mauney CH, Rogers LC, Harris RS, Daniel LW, Devarie-Baez NO, Wu H, Furdui CM, Poole LB, Perrino FW, Hollis T.

Antioxid Redox Signal. 2017 Dec 1;27(16):1317-1331. doi: 10.1089/ars.2016.6888. Epub 2017 Apr 18.

16.

Experimentally Dissecting the Origins of Peroxiredoxin Catalysis.

Nelson KJ, Perkins A, Van Swearingen AED, Hartman S, Brereton AE, Parsonage D, Salsbury FR Jr, Karplus PA, Poole LB.

Antioxid Redox Signal. 2018 Mar 1;28(7):521-536. doi: 10.1089/ars.2016.6922. Epub 2017 Apr 4.

17.

An Atlas of Peroxiredoxins Created Using an Active Site Profile-Based Approach to Functionally Relevant Clustering of Proteins.

Harper AF, Leuthaeuser JB, Babbitt PC, Morris JH, Ferrin TE, Poole LB, Fetrow JS.

PLoS Comput Biol. 2017 Feb 10;13(2):e1005284. doi: 10.1371/journal.pcbi.1005284. eCollection 2017 Feb.

18.

Peroxiredoxin Catalysis at Atomic Resolution.

Perkins A, Parsonage D, Nelson KJ, Ogba OM, Cheong PH, Poole LB, Karplus PA.

Structure. 2016 Oct 4;24(10):1668-1678. doi: 10.1016/j.str.2016.07.012. Epub 2016 Sep 1.

19.

X-ray structures of thioredoxin and thioredoxin reductase from Entamoeba histolytica and prevailing hypothesis of the mechanism of Auranofin action.

Parsonage D, Sheng F, Hirata K, Debnath A, McKerrow JH, Reed SL, Abagyan R, Poole LB, Podust LM.

J Struct Biol. 2016 May;194(2):180-90. doi: 10.1016/j.jsb.2016.02.015. Epub 2016 Feb 12.

20.

Distribution and Features of the Six Classes of Peroxiredoxins.

Poole LB, Nelson KJ.

Mol Cells. 2016 Jan;39(1):53-9. doi: 10.14348/molcells.2016.2330. Epub 2016 Jan 25. Review.

21.

Oxidative Stress Promotes Peroxiredoxin Hyperoxidation and Attenuates Pro-survival Signaling in Aging Chondrocytes.

Collins JA, Wood ST, Nelson KJ, Rowe MA, Carlson CS, Chubinskaya S, Poole LB, Furdui CM, Loeser RF.

J Biol Chem. 2016 Mar 25;291(13):6641-54. doi: 10.1074/jbc.M115.693523. Epub 2016 Jan 21.

22.

Structural changes upon peroxynitrite-mediated nitration of peroxiredoxin 2; nitrated Prx2 resembles its disulfide-oxidized form.

Randall L, Manta B, Nelson KJ, Santos J, Poole LB, Denicola A.

Arch Biochem Biophys. 2016 Jan 15;590:101-108. doi: 10.1016/j.abb.2015.11.032. Epub 2015 Nov 22.

PMID:
26612102
23.

Backbone chemical shift assignments for Xanthomonas campestris peroxiredoxin Q in the reduced and oxidized states: a dramatic change in backbone dynamics.

Buchko GW, Perkins A, Parsonage D, Poole LB, Karplus PA.

Biomol NMR Assign. 2016 Apr;10(1):57-61. doi: 10.1007/s12104-015-9637-8. Epub 2015 Sep 15.

24.

Relation of Pre-anthracycline Serum Bilirubin Levels to Left Ventricular Ejection Fraction After Chemotherapy.

Vera T, D'Agostino RB Jr, Jordan JH, Whitlock MC, Meléndez GC, Lamar ZS, Porosnicu M, Bonkovsky HL, Poole LB, Hundley WG.

Am J Cardiol. 2015 Dec 1;116(11):1752-5. doi: 10.1016/j.amjcard.2015.08.042. Epub 2015 Sep 10.

25.

Cysteine-Mediated Redox Regulation of Cell Signaling in Chondrocytes Stimulated With Fibronectin Fragments.

Wood ST, Long DL, Reisz JA, Yammani RR, Burke EA, Klomsiri C, Poole LB, Furdui CM, Loeser RF.

Arthritis Rheumatol. 2016 Jan;68(1):117-26. doi: 10.1002/art.39326.

26.

Au-ACRAMTU-PEt3 Alters Redox Balance To Inhibit T Cell Proliferation and Function.

Langston PK, Yang M, Bierbach U, Parsonage D, Poole LB, Price MJ, Grayson JM.

J Immunol. 2015 Sep 1;195(5):1984-94. doi: 10.4049/jimmunol.1400391. Epub 2015 Jul 24.

27.

Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling.

Perkins A, Nelson KJ, Parsonage D, Poole LB, Karplus PA.

Trends Biochem Sci. 2015 Aug;40(8):435-45. doi: 10.1016/j.tibs.2015.05.001. Epub 2015 Jun 9. Review.

28.

Introduction: What we do and do not know regarding redox processes of thiols in signaling pathways.

Poole LB, Schöneich C.

Free Radic Biol Med. 2015 Mar;80:145-7. doi: 10.1016/j.freeradbiomed.2015.02.005.

29.

Dissecting peroxiredoxin catalysis: separating binding, peroxidation, and resolution for a bacterial AhpC.

Parsonage D, Nelson KJ, Ferrer-Sueta G, Alley S, Karplus PA, Furdui CM, Poole LB.

Biochemistry. 2015 Feb 24;54(7):1567-75. doi: 10.1021/bi501515w. Epub 2015 Feb 10.

30.

The basics of thiols and cysteines in redox biology and chemistry.

Poole LB.

Free Radic Biol Med. 2015 Mar;80:148-57. doi: 10.1016/j.freeradbiomed.2014.11.013. Epub 2014 Nov 27. Review.

31.

Tuning of peroxiredoxin catalysis for various physiological roles.

Perkins A, Poole LB, Karplus PA.

Biochemistry. 2014 Dec 16;53(49):7693-705. doi: 10.1021/bi5013222. Epub 2014 Dec 1. Review.

32.

Strained cycloalkynes as new protein sulfenic acid traps.

Poole TH, Reisz JA, Zhao W, Poole LB, Furdui CM, King SB.

J Am Chem Soc. 2014 Apr 30;136(17):6167-70. doi: 10.1021/ja500364r. Epub 2014 Apr 16.

33.

Nitration transforms a sensitive peroxiredoxin 2 into a more active and robust peroxidase.

Randall LM, Manta B, Hugo M, Gil M, Batthyàny C, Trujillo M, Poole LB, Denicola A.

J Biol Chem. 2014 May 30;289(22):15536-43. doi: 10.1074/jbc.M113.539213. Epub 2014 Apr 9.

34.

Endosomal H2O2 production leads to localized cysteine sulfenic acid formation on proteins during lysophosphatidic acid-mediated cell signaling.

Klomsiri C, Rogers LC, Soito L, McCauley AK, King SB, Nelson KJ, Poole LB, Daniel LW.

Free Radic Biol Med. 2014 Jun;71:49-60. doi: 10.1016/j.freeradbiomed.2014.03.017. Epub 2014 Mar 21.

35.

The sensitive balance between the fully folded and locally unfolded conformations of a model peroxiredoxin.

Perkins A, Nelson KJ, Williams JR, Parsonage D, Poole LB, Karplus PA.

Biochemistry. 2013 Dec 3;52(48):8708-21. doi: 10.1021/bi4011573. Epub 2013 Nov 20.

36.

Chemical approaches to detect and analyze protein sulfenic acids.

Furdui CM, Poole LB.

Mass Spectrom Rev. 2014 Mar-Apr;33(2):126-46. doi: 10.1002/mas.21384. Epub 2013 Sep 17. Review.

37.

Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids.

Reisz JA, Bechtold E, King SB, Poole LB, Furdui CM.

FEBS J. 2013 Dec;280(23):6150-61. doi: 10.1111/febs.12535. Epub 2013 Oct 16.

38.

D-alanine modification of a protease-susceptible outer membrane component by the Bordetella pertussis dra locus promotes resistance to antimicrobial peptides and polymorphonuclear leukocyte-mediated killing.

Taneja NK, Ganguly T, Bakaletz LO, Nelson KJ, Dubey P, Poole LB, Deora R.

J Bacteriol. 2013 Nov;195(22):5102-11. doi: 10.1128/JB.00510-13. Epub 2013 Sep 6.

39.

Evaluating peroxiredoxin sensitivity toward inactivation by peroxide substrates.

Nelson KJ, Parsonage D, Karplus PA, Poole LB.

Methods Enzymol. 2013;527:21-40. doi: 10.1016/B978-0-12-405882-8.00002-7.

40.

Peroxiredoxin II regulates effector and secondary memory CD8+ T cell responses.

Michalek RD, Crump KE, Weant AE, Hiltbold EM, Juneau DG, Moon EY, Yu DY, Poole LB, Grayson JM.

J Virol. 2012 Dec;86(24):13629-41. doi: 10.1128/JVI.01559-12. Epub 2012 Oct 10.

41.

Vascular bioactivation of nitroglycerin by aldehyde dehydrogenase-2: reaction intermediates revealed by crystallography and mass spectrometry.

Lang BS, Gorren AC, Oberdorfer G, Wenzl MV, Furdui CM, Poole LB, Mayer B, Gruber K.

J Biol Chem. 2012 Nov 2;287(45):38124-34. doi: 10.1074/jbc.M112.371716. Epub 2012 Sep 17.

42.

Mapping the active site helix-to-strand conversion of CxxxxC peroxiredoxin Q enzymes.

Perkins A, Gretes MC, Nelson KJ, Poole LB, Karplus PA.

Biochemistry. 2012 Sep 25;51(38):7638-50. doi: 10.1021/bi301017s. Epub 2012 Sep 14.

43.

Electrostatics of cysteine residues in proteins: parameterization and validation of a simple model.

Salsbury FR Jr, Poole LB, Fetrow JS.

Proteins. 2012 Nov;80(11):2583-91. doi: 10.1002/prot.24142. Epub 2012 Aug 21.

44.

The reversible formation of cysteine sulfenic acid promotes B-cell activation and proliferation.

Crump KE, Juneau DG, Poole LB, Haas KM, Grayson JM.

Eur J Immunol. 2012 Aug;42(8):2152-64. doi: 10.1002/eji.201142289.

45.

A high-throughput drug screen for Entamoeba histolytica identifies a new lead and target.

Debnath A, Parsonage D, Andrade RM, He C, Cobo ER, Hirata K, Chen S, García-Rivera G, Orozco E, Martínez MB, Gunatilleke SS, Barrios AM, Arkin MR, Poole LB, McKerrow JH, Reed SL.

Nat Med. 2012 Jun;18(6):956-60. doi: 10.1038/nm.2758.

46.

A new family of membrane electron transporters and its substrates, including a new cell envelope peroxiredoxin, reveal a broadened reductive capacity of the oxidative bacterial cell envelope.

Cho SH, Parsonage D, Thurston C, Dutton RJ, Poole LB, Collet JF, Beckwith J.

MBio. 2012 Apr 3;3(2). pii: e00291-11. doi: 10.1128/mBio.00291-11. Print 2012.

47.

A simple and effective strategy for labeling cysteine sulfenic acid in proteins by utilization of β-ketoesters as cleavable probes.

Qian J, Wani R, Klomsiri C, Poole LB, Tsang AW, Furdui CM.

Chem Commun (Camb). 2012 Apr 28;48(34):4091-3. doi: 10.1039/c2cc17868k. Epub 2012 Mar 20.

48.

Structural and electrostatic asymmetry at the active site in typical and atypical peroxiredoxin dimers.

Salsbury FR Jr, Yuan Y, Knaggs MH, Poole LB, Fetrow JS.

J Phys Chem B. 2012 Jun 14;116(23):6832-43. doi: 10.1021/jp212606k. Epub 2012 Apr 4.

49.

Peroxiredoxins as molecular triage agents, sacrificing themselves to enhance cell survival during a peroxide attack.

Karplus PA, Poole LB.

Mol Cell. 2012 Feb 10;45(3):275-8. doi: 10.1016/j.molcel.2012.01.012.

50.

Peroxiredoxins in parasites.

Gretes MC, Poole LB, Karplus PA.

Antioxid Redox Signal. 2012 Aug 15;17(4):608-33. doi: 10.1089/ars.2011.4404. Epub 2012 Jan 25. Review.

Supplemental Content

Loading ...
Support Center