Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 63

1.

Brain active transmembrane water cycling measured by MR is associated with neuronal activity.

Bai R, Springer CS Jr, Plenz D, Basser PJ.

Magn Reson Med. 2018 Sep 8. doi: 10.1002/mrm.27473. [Epub ahead of print]

PMID:
30194797
2.

Altered avalanche dynamics in a developmental NMDAR hypofunction model of cognitive impairment.

Seshadri S, Klaus A, Winkowski DE, Kanold PO, Plenz D.

Transl Psychiatry. 2018 Jan 10;8(1):3. doi: 10.1038/s41398-017-0060-z.

3.

Maintained avalanche dynamics during task-induced changes of neuronal activity in nonhuman primates.

Yu S, Ribeiro TL, Meisel C, Chou S, Mitz A, Saunders R, Plenz D.

Elife. 2017 Nov 8;6. pii: e27119. doi: 10.7554/eLife.27119.

4.

Fast, Na+ /K+ pump driven, steady-state transcytolemmal water exchange in neuronal tissue: A study of rat brain cortical cultures.

Bai R, Springer CS Jr, Plenz D, Basser PJ.

Magn Reson Med. 2018 Jun;79(6):3207-3217. doi: 10.1002/mrm.26980. Epub 2017 Nov 6.

PMID:
29106751
5.

The Interplay between Long- and Short-Range Temporal Correlations Shapes Cortex Dynamics across Vigilance States.

Meisel C, Klaus A, Vyazovskiy VV, Plenz D.

J Neurosci. 2017 Oct 18;37(42):10114-10124. doi: 10.1523/JNEUROSCI.0448-17.2017. Epub 2017 Sep 25.

6.

Decline of long-range temporal correlations in the human brain during sustained wakefulness.

Meisel C, Bailey K, Achermann P, Plenz D.

Sci Rep. 2017 Sep 19;7(1):11825. doi: 10.1038/s41598-017-12140-w.

7.

A Low-Correlation Resting State of the Striatum during Cortical Avalanches and Its Role in Movement Suppression.

Klaus A, Plenz D.

PLoS Biol. 2016 Dec 6;14(12):e1002582. doi: 10.1371/journal.pbio.1002582. eCollection 2016 Dec.

8.

Quantifying antiepileptic drug effects using intrinsic excitability measures.

Meisel C, Plenz D, Schulze-Bonhage A, Reichmann H.

Epilepsia. 2016 Nov;57(11):e210-e215. doi: 10.1111/epi.13517. Epub 2016 Aug 26.

9.

Temporal correlations in neuronal avalanche occurrence.

Lombardi F, Herrmann HJ, Plenz D, de Arcangelis L.

Sci Rep. 2016 Apr 20;6:24690. doi: 10.1038/srep24690.

10.

Assessing the sensitivity of diffusion MRI to detect neuronal activity directly.

Bai R, Stewart CV, Plenz D, Basser PJ.

Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):E1728-37. doi: 10.1073/pnas.1519890113. Epub 2016 Mar 3.

11.

Opening bottlenecks on weighted networks by local adaptation to cascade failures.

Alstott J, Pajevic S, Bullmore E, Plenz D.

J Complex Netw. 2015 Dec;3(4):552-565. doi: 10.1093/comnet/cnv002. Epub 2015 Mar 9.

12.

Intrinsic excitability measures track antiepileptic drug action and uncover increasing/decreasing excitability over the wake/sleep cycle.

Meisel C, Schulze-Bonhage A, Freestone D, Cook MJ, Achermann P, Plenz D.

Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):14694-9. doi: 10.1073/pnas.1513716112. Epub 2015 Nov 9.

13.

Simultaneous calcium fluorescence imaging and MR of ex vivo organotypic cortical cultures: a new test bed for functional MRI.

Bai R, Klaus A, Bellay T, Stewart C, Pajevic S, Nevo U, Merkle H, Plenz D, Basser PJ.

NMR Biomed. 2015 Dec;28(12):1726-38. doi: 10.1002/nbm.3424. Epub 2015 Oct 29.

PMID:
26510537
14.

Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state.

Bellay T, Klaus A, Seshadri S, Plenz D.

Elife. 2015 Jul 7;4:e07224. doi: 10.7554/eLife.07224.

15.

Criticality as a signature of healthy neural systems.

Massobrio P, de Arcangelis L, Pasquale V, Jensen HJ, Plenz D.

Front Syst Neurosci. 2015 Feb 25;9:22. doi: 10.3389/fnsys.2015.00022. eCollection 2015. No abstract available.

16.

Critical slowing down governs the transition to neuron spiking.

Meisel C, Klaus A, Kuehn C, Plenz D.

PLoS Comput Biol. 2015 Feb 23;11(2):e1004097. doi: 10.1371/journal.pcbi.1004097. eCollection 2015 Feb.

17.

Synaptic plasticity enables adaptive self-tuning critical networks.

Stepp N, Plenz D, Srinivasa N.

PLoS Comput Biol. 2015 Jan 15;11(1):e1004043. doi: 10.1371/journal.pcbi.1004043. eCollection 2015 Jan.

18.

On the temporal organization of neuronal avalanches.

Lombardi F, Herrmann HJ, Plenz D, De Arcangelis L.

Front Syst Neurosci. 2014 Oct 28;8:204. doi: 10.3389/fnsys.2014.00204. eCollection 2014.

19.

Scale-invariant neuronal avalanche dynamics and the cut-off in size distributions.

Yu S, Klaus A, Yang H, Plenz D.

PLoS One. 2014 Jun 13;9(6):e99761. doi: 10.1371/journal.pone.0099761. eCollection 2014.

20.

Powerlaw: a Python package for analysis of heavy-tailed distributions.

Alstott J, Bullmore E, Plenz D.

PLoS One. 2014 Jan 29;9(1):e85777. doi: 10.1371/journal.pone.0085777. eCollection 2014. Erratum in: PLoS One. 2014;9(4):e95816.

21.

Universal organization of resting brain activity at the thermodynamic critical point.

Yu S, Yang H, Shriki O, Plenz D.

Front Syst Neurosci. 2013 Aug 22;7:42. doi: 10.3389/fnsys.2013.00042. eCollection 2013.

22.

Neuronal avalanches in the resting MEG of the human brain.

Shriki O, Alstott J, Carver F, Holroyd T, Henson RN, Smith ML, Coppola R, Bullmore E, Plenz D.

J Neurosci. 2013 Apr 17;33(16):7079-90. doi: 10.1523/JNEUROSCI.4286-12.2013.

23.

Balance between excitation and inhibition controls the temporal organization of neuronal avalanches.

Lombardi F, Herrmann HJ, Perrone-Capano C, Plenz D, de Arcangelis L.

Phys Rev Lett. 2012 Jun 1;108(22):228703. Epub 2012 May 31.

PMID:
23003665
24.

The functional benefits of criticality in the cortex.

Shew WL, Plenz D.

Neuroscientist. 2013 Feb;19(1):88-100. doi: 10.1177/1073858412445487. Epub 2012 May 24. Review.

PMID:
22627091
25.

Maximal variability of phase synchrony in cortical networks with neuronal avalanches.

Yang H, Shew WL, Roy R, Plenz D.

J Neurosci. 2012 Jan 18;32(3):1061-72. doi: 10.1523/JNEUROSCI.2771-11.2012.

26.

The organization of strong links in complex networks.

Pajevic S, Plenz D.

Nat Phys. 2012;8:429-436. doi: 10.1038/nphys2257. Epub 2012 Mar 11.

27.

Higher-order interactions characterized in cortical activity.

Yu S, Yang H, Nakahara H, Santos GS, Nikolić D, Plenz D.

J Neurosci. 2011 Nov 30;31(48):17514-26. doi: 10.1523/JNEUROSCI.3127-11.2011.

28.

Multi-electrode array recordings of neuronal avalanches in organotypic cultures.

Plenz D, Stewart CV, Shew W, Yang H, Klaus A, Bellay T.

J Vis Exp. 2011 Aug 1;(54). pii: 2949. doi: 10.3791/2949.

29.

Statistical analyses support power law distributions found in neuronal avalanches.

Klaus A, Yu S, Plenz D.

PLoS One. 2011;6(5):e19779. doi: 10.1371/journal.pone.0019779. Epub 2011 May 26.

30.

Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches.

Shew WL, Yang H, Yu S, Roy R, Plenz D.

J Neurosci. 2011 Jan 5;31(1):55-63. doi: 10.1523/JNEUROSCI.4637-10.2011.

31.

Simultaneous multi-electrode array recording and two-photon calcium imaging of neural activity.

Shew WL, Bellay T, Plenz D.

J Neurosci Methods. 2010 Sep 30;192(1):75-82. doi: 10.1016/j.jneumeth.2010.07.023. Epub 2010 Jul 24.

32.

Neuronal avalanches in spontaneous activity in vivo.

Hahn G, Petermann T, Havenith MN, Yu S, Singer W, Plenz D, Nikolic D.

J Neurophysiol. 2010 Dec;104(6):3312-22. doi: 10.1152/jn.00953.2009. Epub 2010 Jul 14.

33.

Hierarchical interaction structure of neural activities in cortical slice cultures.

Santos GS, Gireesh ED, Plenz D, Nakahara H.

J Neurosci. 2010 Jun 30;30(26):8720-33. doi: 10.1523/JNEUROSCI.6141-09.2010.

34.

Angiogenic factors stimulate growth of adult neural stem cells.

Androutsellis-Theotokis A, Rueger MA, Park DM, Boyd JD, Padmanabhan R, Campanati L, Stewart CV, LeFranc Y, Plenz D, Walbridge S, Lonser RR, McKay RD.

PLoS One. 2010 Feb 26;5(2):e9414. doi: 10.1371/journal.pone.0009414.

35.

Coherence potentials: loss-less, all-or-none network events in the cortex.

Thiagarajan TC, Lebedev MA, Nicolelis MA, Plenz D.

PLoS Biol. 2010 Jan 12;8(1):e1000278. doi: 10.1371/journal.pbio.1000278. Erratum in: PLoS Biol. 2010;8(1). doi: 10.1371/annotation/668be458-400b-4c19-accf-34fc543340e2. PLoS Biol. 2010;8(1). doi: 10.1371/annotation/f6193dfe-a90c-4110-b0a0-22d81a87b921.

36.

Neuronal avalanches imply maximum dynamic range in cortical networks at criticality.

Shew WL, Yang H, Petermann T, Roy R, Plenz D.

J Neurosci. 2009 Dec 9;29(49):15595-600. doi: 10.1523/JNEUROSCI.3864-09.2009.

37.

Spontaneous cortical activity in awake monkeys composed of neuronal avalanches.

Petermann T, Thiagarajan TC, Lebedev MA, Nicolelis MA, Chialvo DR, Plenz D.

Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15921-6. doi: 10.1073/pnas.0904089106. Epub 2009 Aug 26.

38.

Efficient network reconstruction from dynamical cascades identifies small-world topology of neuronal avalanches.

Pajevic S, Plenz D.

PLoS Comput Biol. 2009 Jan;5(1):e1000271. doi: 10.1371/journal.pcbi.1000271. Epub 2009 Jan 30.

39.

Neuronal avalanches organize as nested theta- and beta/gamma-oscillations during development of cortical layer 2/3.

Gireesh ED, Plenz D.

Proc Natl Acad Sci U S A. 2008 May 27;105(21):7576-81. doi: 10.1073/pnas.0800537105. Epub 2008 May 22.

40.

Preparation and maintenance of organotypic cultures for multi-electrode array recordings.

Karpiak VC, Plenz D.

Curr Protoc Neurosci. 2002 Aug;Chapter 6:Unit 6.15. doi: 10.1002/0471142301.ns0615s19.

PMID:
18428563
41.

Homeostasis of neuronal avalanches during postnatal cortex development in vitro.

Stewart CV, Plenz D.

J Neurosci Methods. 2008 Apr 30;169(2):405-16. Epub 2007 Nov 7.

42.

The organizing principles of neuronal avalanches: cell assemblies in the cortex?

Plenz D, Thiagarajan TC.

Trends Neurosci. 2007 Mar;30(3):101-10. Epub 2007 Feb 1. Review.

PMID:
17275102
43.

Direct magnetic resonance detection of neuronal electrical activity.

Petridou N, Plenz D, Silva AC, Loew M, Bodurka J, Bandettini PA.

Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):16015-20. Epub 2006 Oct 12.

45.

Comment on "Critical branching captures activity in living neural networks and maximizes the number of metastable states".

Plenz D.

Phys Rev Lett. 2005 Nov 18;95(21):219801; author reply 219802. Epub 2005 Nov 14. No abstract available.

PMID:
16384195
46.

A comparative voltage and current-clamp analysis of feedback and feedforward synaptic transmission in the striatal microcircuit in vitro.

Gustafson N, Gireesh-Dharmaraj E, Czubayko U, Blackwell KT, Plenz D.

J Neurophysiol. 2006 Feb;95(2):737-52. Epub 2005 Oct 19.

47.

Using potassium currents to solve signal-to-noise problems in inhibitory feedforward networks of the striatum.

Kotaleski JH, Plenz D, Blackwell KT.

J Neurophysiol. 2006 Jan;95(1):331-41. Epub 2005 Sep 28.

49.
50.

Neuronal avalanches in neocortical circuits.

Beggs JM, Plenz D.

J Neurosci. 2003 Dec 3;23(35):11167-77.

Supplemental Content

Support Center