Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 122

1.

Avoiding Proteolysis during the Extraction and Purification of Active Plant Enzymes.

Plaxton WC.

Plant Cell Physiol. 2019 Apr 1;60(4):715-724. doi: 10.1093/pcp/pcz028.

PMID:
30753712
2.

Structural and biochemical characterization of citrate binding to AtPPC3, a plant-type phosphoenolpyruvate carboxylase from Arabidopsis thaliana.

Connell MB, Lee MJY, Li J, Plaxton WC, Jia Z.

J Struct Biol. 2018 Dec;204(3):507-512. doi: 10.1016/j.jsb.2018.11.003. Epub 2018 Nov 9.

PMID:
30419358
3.

Lectin AtGAL1 interacts with high-mannose glycoform of the purple acid phosphatase AtPAP26 secreted by phosphate-starved Arabidopsis.

Ghahremani M, Park J, Anderson EM, Marty-Howard NJ, Mullen RT, Plaxton WC.

Plant Cell Environ. 2019 Apr;42(4):1158-1166. doi: 10.1111/pce.13463. Epub 2018 Nov 29.

PMID:
30341950
4.

A glycoform of the secreted purple acid phosphatase AtPAP26 co-purifies with a mannose-binding lectin (AtGAL1) upregulated by phosphate-starved Arabidopsis.

Ghahremani M, Tran H, Biglou SG, O'Gallagher B, She YM, Plaxton WC.

Plant Cell Environ. 2019 Apr;42(4):1139-1157. doi: 10.1111/pce.13432. Epub 2019 Jan 18.

PMID:
30156702
5.

The signal metabolite trehalose-6-phosphate inhibits the sucrolytic activity of sucrose synthase from developing castor beans.

Fedosejevs ET, Feil R, Lunn JE, Plaxton WC.

FEBS Lett. 2018 Aug;592(15):2525-2532. doi: 10.1002/1873-3468.13197. Epub 2018 Aug 3.

6.

Molecular mechanisms underpinning phosphorus-use efficiency in rice.

Dissanayaka DMSB, Plaxton WC, Lambers H, Siebers M, Marambe B, Wasaki J.

Plant Cell Environ. 2018 Jul;41(7):1483-1496. doi: 10.1111/pce.13191. Epub 2018 Apr 20. Review.

PMID:
29520969
7.

Transcript profiling indicates a widespread role for bacterial-type phosphoenolpyruvate carboxylase in malate-accumulating sink tissues.

Ting MKY, She YM, Plaxton WC.

J Exp Bot. 2017 Dec 16;68(21-22):5857-5869. doi: 10.1093/jxb/erx399.

8.

Coimmunoprecipitation of reversibly glycosylated polypeptide with sucrose synthase from developing castor oilseeds.

Fedosejevs ET, Liu LNC, Abergel M, She YM, Plaxton WC.

FEBS Lett. 2017 Dec;591(23):3872-3880. doi: 10.1002/1873-3468.12893. Epub 2017 Nov 14.

9.

Regulatory Phosphorylation of Bacterial-Type PEP Carboxylase by the Ca2+-Dependent Protein Kinase RcCDPK1 in Developing Castor Oil Seeds.

Ying S, Hill AT, Pyc M, Anderson EM, Snedden WA, Mullen RT, She YM, Plaxton WC.

Plant Physiol. 2017 Jun;174(2):1012-1027. doi: 10.1104/pp.17.00288. Epub 2017 Mar 31.

10.

Leucoplast Isolation and Subfractionation.

Plaxton WC.

Methods Mol Biol. 2017;1511:73-81.

PMID:
27730603
11.

The calcium-dependent protein kinase RcCDPK2 phosphorylates sucrose synthase at Ser11 in developing castor oil seeds.

Fedosejevs ET, Gerdis SA, Ying S, Pyc M, Anderson EM, Snedden WA, Mullen RT, She YM, Plaxton WC.

Biochem J. 2016 Oct 15;473(20):3667-3682. Epub 2016 Aug 10.

PMID:
27512054
12.

New insights into the post-translational modification of multiple phosphoenolpyruvate carboxylase isoenzymes by phosphorylation and monoubiquitination during sorghum seed development and germination.

Ruiz-Ballesta I, Baena G, Gandullo J, Wang L, She YM, Plaxton WC, Echevarría C.

J Exp Bot. 2016 May;67(11):3523-36. doi: 10.1093/jxb/erw186. Epub 2016 May 18.

14.

Trehalose 6-phosphate coordinates organic and amino acid metabolism with carbon availability.

Figueroa CM, Feil R, Ishihara H, Watanabe M, Kölling K, Krause U, Höhne M, Encke B, Plaxton WC, Zeeman SC, Li Z, Schulze WX, Hoefgen R, Stitt M, Lunn JE.

Plant J. 2016 Feb;85(3):410-23. doi: 10.1111/tpj.13114.

15.

Phosphorus nutrition in Proteaceae and beyond.

Lambers H, Finnegan PM, Jost R, Plaxton WC, Shane MW, Stitt M.

Nat Plants. 2015 Aug 4;1:15109. doi: 10.1038/nplants.2015.109. Review.

PMID:
27250542
16.

Molecular Mechanisms of Phosphorus Metabolism and Transport during Leaf Senescence.

Stigter KA, Plaxton WC.

Plants (Basel). 2015 Dec 16;4(4):773-98. doi: 10.3390/plants4040773. Review.

17.

Biochemical and molecular characterization of RcSUS1, a cytosolic sucrose synthase phosphorylated in vivo at serine 11 in developing castor oil seeds.

Fedosejevs ET, Ying S, Park J, Anderson EM, Mullen RT, She YM, Plaxton WC.

J Biol Chem. 2014 Nov 28;289(48):33412-24. doi: 10.1074/jbc.M114.585554. Epub 2014 Oct 13.

18.

The cell wall-targeted purple acid phosphatase AtPAP25 is critical for acclimation of Arabidopsis thaliana to nutritional phosphorus deprivation.

Del Vecchio HA, Ying S, Park J, Knowles VL, Kanno S, Tanoi K, She YM, Plaxton WC.

Plant J. 2014 Nov;80(4):569-81. doi: 10.1111/tpj.12663.

19.
20.

In vivo monoubiquitination of anaplerotic phosphoenolpyruvate carboxylase occurs at Lys624 in germinating sorghum seeds.

Ruiz-Ballesta I, Feria AB, Ni H, She YM, Plaxton WC, Echevarría C.

J Exp Bot. 2014 Feb;65(2):443-51. doi: 10.1093/jxb/ert386. Epub 2013 Nov 28.

22.
23.

The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana.

Robinson WD, Park J, Tran HT, Del Vecchio HA, Ying S, Zins JL, Patel K, McKnight TD, Plaxton WC.

J Exp Bot. 2012 Nov;63(18):6531-42. doi: 10.1093/jxb/ers309. Epub 2012 Nov 3.

24.

Eliminating the purple acid phosphatase AtPAP26 in Arabidopsis thaliana delays leaf senescence and impairs phosphorus remobilization.

Robinson WD, Carson I, Ying S, Ellis K, Plaxton WC.

New Phytol. 2012 Dec;196(4):1024-9. doi: 10.1111/nph.12006. Epub 2012 Oct 16.

25.

Opportunities for improving phosphorus-use efficiency in crop plants.

Veneklaas EJ, Lambers H, Bragg J, Finnegan PM, Lovelock CE, Plaxton WC, Price CA, Scheible WR, Shane MW, White PJ, Raven JA.

New Phytol. 2012 Jul;195(2):306-20. doi: 10.1111/j.1469-8137.2012.04190.x. Epub 2012 Jun 12. Review.

26.

The bacterial-type phosphoenolpyruvate carboxylase isozyme from developing castor oil seeds is subject to in vivo regulatory phosphorylation at serine-451.

Dalziel KJ, O'Leary B, Brikis C, Rao SK, She YM, Cyr T, Plaxton WC.

FEBS Lett. 2012 Apr 5;586(7):1049-54. doi: 10.1016/j.febslet.2012.02.054. Epub 2012 Mar 9.

27.

Bacterial- and plant-type phosphoenolpyruvate carboxylase isozymes from developing castor oil seeds interact in vivo and associate with the surface of mitochondria.

Park J, Khuu N, Howard AS, Mullen RT, Plaxton WC.

Plant J. 2012 Jul;71(2):251-62. doi: 10.1111/j.1365-313X.2012.04985.x. Epub 2012 May 28.

28.

Tissue-specific expression and post-translational modifications of plant- and bacterial-type phosphoenolpyruvate carboxylase isozymes of the castor oil plant, Ricinus communis L.

O'Leary B, Fedosejevs ET, Hill AT, Bettridge J, Park J, Rao SK, Leach CA, Plaxton WC.

J Exp Bot. 2011 Nov;62(15):5485-95. doi: 10.1093/jxb/err225. Epub 2011 Aug 12.

29.

Metabolic adaptations of phosphate-starved plants.

Plaxton WC, Tran HT.

Plant Physiol. 2011 Jul;156(3):1006-15. doi: 10.1104/pp.111.175281. Epub 2011 May 11. Review. No abstract available.

30.
31.

Phosphorylation of bacterial-type phosphoenolpyruvate carboxylase at Ser425 provides a further tier of enzyme control in developing castor oil seeds.

O'Leary B, Rao SK, Plaxton WC.

Biochem J. 2011 Jan 1;433(1):65-74. doi: 10.1042/BJ20101361. Erratum in: Biochem J. 2011 May 1;435(3):791.

32.

Biochemical and molecular characterization of AtPAP12 and AtPAP26: the predominant purple acid phosphatase isozymes secreted by phosphate-starved Arabidopsis thaliana.

Tran HT, Qian W, Hurley BA, She YM, Wang D, Plaxton WC.

Plant Cell Environ. 2010 Nov;33(11):1789-803. doi: 10.1111/j.1365-3040.2010.02184.x.

33.

The dual-targeted purple acid phosphatase isozyme AtPAP26 is essential for efficient acclimation of Arabidopsis to nutritional phosphate deprivation.

Hurley BA, Tran HT, Marty NJ, Park J, Snedden WA, Mullen RT, Plaxton WC.

Plant Physiol. 2010 Jul;153(3):1112-22. doi: 10.1104/pp.110.153270. Epub 2010 Mar 26.

34.

Bacterial-type phosphoenolpyruvate carboxylase (PEPC) functions as a catalytic and regulatory subunit of the novel class-2 PEPC complex of vascular plants.

O'Leary B, Rao SK, Kim J, Plaxton WC.

J Biol Chem. 2009 Sep 11;284(37):24797-805. doi: 10.1074/jbc.M109.022863. Epub 2009 Jul 15.

35.

In vivo regulatory phosphorylation of the phosphoenolpyruvate carboxylase AtPPC1 in phosphate-starved Arabidopsis thaliana.

Gregory AL, Hurley BA, Tran HT, Valentine AJ, She YM, Knowles VL, Plaxton WC.

Biochem J. 2009 Apr 28;420(1):57-65. doi: 10.1042/BJ20082397.

36.
37.

Regulatory monoubiquitination of phosphoenolpyruvate carboxylase in germinating castor oil seeds.

Uhrig RG, She YM, Leach CA, Plaxton WC.

J Biol Chem. 2008 Oct 31;283(44):29650-7. doi: 10.1074/jbc.M806102200. Epub 2008 Aug 26.

38.

Coimmunopurification of phosphorylated bacterial- and plant-type phosphoenolpyruvate carboxylases with the plastidial pyruvate dehydrogenase complex from developing castor oil seeds.

Uhrig RG, O'Leary B, Spang HE, MacDonald JA, She YM, Plaxton WC.

Plant Physiol. 2008 Mar;146(3):1346-57. doi: 10.1104/pp.107.110361. Epub 2008 Jan 9. Erratum in: Plant Physiol. 2019 Jul;180(3):1771-1773.

39.

Bacterial- and plant-type phosphoenolpyruvate carboxylase polypeptides interact in the hetero-oligomeric Class-2 PEPC complex of developing castor oil seeds.

Gennidakis S, Rao S, Greenham K, Uhrig RG, O'Leary B, Snedden WA, Lu C, Plaxton WC.

Plant J. 2007 Dec;52(5):839-49. Epub 2007 Sep 25.

42.

Biochemical and molecular characterization of AtPAP26, a vacuolar purple acid phosphatase up-regulated in phosphate-deprived Arabidopsis suspension cells and seedlings.

Veljanovski V, Vanderbeld B, Knowles VL, Snedden WA, Plaxton WC.

Plant Physiol. 2006 Nov;142(3):1282-93. Epub 2006 Sep 8.

43.

In vitro proteolysis of phosphoenolpyruvate carboxylase from developing castor oil seeds by an endogenous thiol endopeptidase.

Crowley V, Gennidakis S, Plaxton WC.

Plant Cell Physiol. 2005 Nov;46(11):1855-62. Epub 2005 Sep 27.

PMID:
16188875
44.

In vivo regulatory phosphorylation of novel phosphoenolpyruvate carboxylase isoforms in endosperm of developing castor oil seeds.

Tripodi KE, Turner WL, Gennidakis S, Plaxton WC.

Plant Physiol. 2005 Oct;139(2):969-78. Epub 2005 Sep 16.

46.
48.
49.

Phosphite accelerates programmed cell death in phosphate-starved oilseed rape (Brassica napus) suspension cell cultures.

Singh VK, Wood SM, Knowles VL, Plaxton WC.

Planta. 2003 Dec;218(2):233-9. Epub 2003 Aug 14.

PMID:
12920596

Supplemental Content

Loading ...
Support Center