Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 20

1.

Reply to Khatoun et al.: Speculation about brain stimulation must be constrained by observation.

Krause MR, Vieira PG, Csorba BA, Pilly PK, Pack CC.

Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22440-22441. doi: 10.1073/pnas.1914483116. Epub 2019 Oct 15. No abstract available.

PMID:
31615881
2.

Transcranial alternating current stimulation entrains single-neuron activity in the primate brain.

Krause MR, Vieira PG, Csorba BA, Pilly PK, Pack CC.

Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5747-5755. doi: 10.1073/pnas.1815958116. Epub 2019 Mar 4.

3.

Transcranial Current Stimulation During Sleep Facilitates Insight into Temporal Rules, but does not Consolidate Memories of Individual Sequential Experiences.

Lerner I, Ketz NA, Jones AP, Bryant NB, Robert B, Skorheim SW, Hartholt A, Rizzo AS, Gluck MA, Clark VP, Pilly PK.

Sci Rep. 2019 Feb 6;9(1):1516. doi: 10.1038/s41598-018-36107-7.

4.

Dose-Dependent Effects of Closed-Loop tACS Delivered During Slow-Wave Oscillations on Memory Consolidation.

Jones AP, Choe J, Bryant NB, Robinson CSH, Ketz NA, Skorheim SW, Combs A, Lamphere ML, Robert B, Gill HA, Heinrich MD, Howard MD, Clark VP, Pilly PK.

Front Neurosci. 2018 Nov 27;12:867. doi: 10.3389/fnins.2018.00867. eCollection 2018.

5.

Modeling Contextual Modulation of Memory Associations in the Hippocampus.

Pilly PK, Howard MD, Bhattacharyya R.

Front Hum Neurosci. 2018 Nov 9;12:442. doi: 10.3389/fnhum.2018.00442. eCollection 2018.

6.

The Benefits of Closed-Loop Transcranial Alternating Current Stimulation on Subjective Sleep Quality.

Robinson CSH, Bryant NB, Maxwell JW, Jones AP, Robert B, Lamphere M, Combs A, Al Azzawi HM, Gibson BC, Sanguinetti JL, Ketz NA, Pilly PK, Clark VP.

Brain Sci. 2018 Nov 22;8(12). pii: E204. doi: 10.3390/brainsci8120204.

7.

Closed-Loop Slow-Wave tACS Improves Sleep-Dependent Long-Term Memory Generalization by Modulating Endogenous Oscillations.

Ketz N, Jones AP, Bryant NB, Clark VP, Pilly PK.

J Neurosci. 2018 Aug 15;38(33):7314-7326. doi: 10.1523/JNEUROSCI.0273-18.2018. Epub 2018 Jul 23.

8.

Mental State Assessment and Validation Using Personalized Physiological Biometrics.

Patel AN, Howard MD, Roach SM, Jones AP, Bryant NB, Robinson CSH, Clark VP, Pilly PK.

Front Hum Neurosci. 2018 Jun 1;12:221. doi: 10.3389/fnhum.2018.00221. eCollection 2018.

9.

Transcranial Direct Current Stimulation Facilitates Associative Learning and Alters Functional Connectivity in the Primate Brain.

Krause MR, Zanos TP, Csorba BA, Pilly PK, Choe J, Phillips ME, Datta A, Pack CC.

Curr Biol. 2017 Oct 23;27(20):3086-3096.e3. doi: 10.1016/j.cub.2017.09.020. Epub 2017 Oct 12.

10.

On comparing in vivo intracranial recordings in non-human primates to predictions of optimized transcranial electrical stimulation.

Datta A, Krause MR, Pilly PK, Choe J, Zanos TP, Thomas C, Pack CC.

Conf Proc IEEE Eng Med Biol Soc. 2016 Aug;2016:1774-1777. doi: 10.1109/EMBC.2016.7591061.

PMID:
28268671
11.

How does the modular organization of entorhinal grid cells develop?

Pilly PK, Grossberg S.

Front Hum Neurosci. 2014 Jun 3;8:337. doi: 10.3389/fnhum.2014.00337. eCollection 2014.

12.

Coordinated learning of grid cell and place cell spatial and temporal properties: multiple scales, attention and oscillations.

Grossberg S, Pilly PK.

Philos Trans R Soc Lond B Biol Sci. 2013 Dec 23;369(1635):20120524. doi: 10.1098/rstb.2012.0524. Print 2014 Feb 5.

13.
14.
15.

How entorhinal grid cells may learn multiple spatial scales from a dorsoventral gradient of cell response rates in a self-organizing map.

Grossberg S, Pilly PK.

PLoS Comput Biol. 2012;8(10):e1002648. doi: 10.1371/journal.pcbi.1002648. Epub 2012 Oct 4.

16.

How do spatial learning and memory occur in the brain? Coordinated learning of entorhinal grid cells and hippocampal place cells.

Pilly PK, Grossberg S.

J Cogn Neurosci. 2012 May;24(5):1031-54. doi: 10.1162/jocn_a_00200. Epub 2012 Jan 30.

PMID:
22288394
17.

Low-level sensory plasticity during task-irrelevant perceptual learning: evidence from conventional and double training procedures.

Pilly PK, Grossberg S, Seitz AR.

Vision Res. 2010 Feb 22;50(4):424-32. doi: 10.1016/j.visres.2009.09.022. Epub 2009 Oct 1.

18.

What a difference a parameter makes: a psychophysical comparison of random dot motion algorithms.

Pilly PK, Seitz AR.

Vision Res. 2009 Jun;49(13):1599-612. doi: 10.1016/j.visres.2009.03.019. Epub 2009 Mar 29.

19.

Interactions between contrast and spatial displacement in visual motion processing.

Seitz AR, Pilly PK, Pack CC.

Curr Biol. 2008 Oct 14;18(19):R904-6. doi: 10.1016/j.cub.2008.07.065. No abstract available.

20.

Temporal dynamics of decision-making during motion perception in the visual cortex.

Grossberg S, Pilly PK.

Vision Res. 2008 Jun;48(12):1345-73. doi: 10.1016/j.visres.2008.02.019. Epub 2008 May 2.

Supplemental Content

Loading ...
Support Center