Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 53


Identification of Thermotoga maritima MSB8 GH57 α-amylase AmyC as a glycogen-branching enzyme with high hydrolytic activity.

Zhang X, Leemhuis H, Janeček Š, Martinovičová M, Pijning T, van der Maarel MJEC.

Appl Microbiol Biotechnol. 2019 Aug;103(15):6141-6151. doi: 10.1007/s00253-019-09938-1. Epub 2019 Jun 13.


Enantioselective Synthesis of Pharmaceutically Active γ-Aminobutyric Acids Using a Tailor-Made Artificial Michaelase in One-Pot Cascade Reactions.

Biewenga L, Saravanan T, Kunzendorf A, van der Meer JY, Pijning T, Tepper PG, van Merkerk R, Charnock SJ, Thunnissen AWH, Poelarends GJ.

ACS Catal. 2019 Feb 1;9(2):1503-1513. doi: 10.1021/acscatal.8b04299. Epub 2019 Jan 7.


Mutational Analysis of the Role of the Glucansucrase Gtf180-ΔN Active Site Residues in Product and Linkage Specificity with Lactose as Acceptor Substrate.

Pham H, Pijning T, Dijkhuizen L, van Leeuwen SS.

J Agric Food Chem. 2018 Nov 28;66(47):12544-12554. doi: 10.1021/acs.jafc.8b04486. Epub 2018 Nov 15.


Biochemical characterization of a GH70 protein from Lactobacillus kunkeei DSM 12361 with two catalytic domains involving branching sucrase activity.

Meng X, Gangoiti J, Wang X, Grijpstra P, van Leeuwen SS, Pijning T, Dijkhuizen L.

Appl Microbiol Biotechnol. 2018 Sep;102(18):7935-7950. doi: 10.1007/s00253-018-9236-6. Epub 2018 Jul 24.


Biochemical and genetic characterization of fungal proline hydroxylase in echinocandin biosynthesis.

Zhang F, Liu H, Zhang T, Pijning T, Yu L, Zhang W, Liu W, Meng X.

Appl Microbiol Biotechnol. 2018 Sep;102(18):7877-7890. doi: 10.1007/s00253-018-9179-y. Epub 2018 Jul 9.


Biochemical characterization of two GH70 family 4,6-α-glucanotransferases with distinct product specificity from Lactobacillus aviarius subsp. aviarius DSM 20655.

Meng X, Gangoiti J, de Kok N, van Leeuwen SS, Pijning T, Dijkhuizen L.

Food Chem. 2018 Jul 1;253:236-246. doi: 10.1016/j.foodchem.2018.01.154. Epub 2018 Jan 31.


Biotechnological potential of novel glycoside hydrolase family 70 enzymes synthesizing α-glucans from starch and sucrose.

Gangoiti J, Pijning T, Dijkhuizen L.

Biotechnol Adv. 2018 Jan - Feb;36(1):196-207. doi: 10.1016/j.biotechadv.2017.11.001. Epub 2017 Nov 10. Review.


A general mechanism of ribosome dimerization revealed by single-particle cryo-electron microscopy.

Franken LE, Oostergetel GT, Pijning T, Puri P, Arkhipova V, Boekema EJ, Poolman B, Guskov A.

Nat Commun. 2017 Sep 28;8(1):722. doi: 10.1038/s41467-017-00718-x.


Mining novel starch-converting Glycoside Hydrolase 70 enzymes from the Nestlé Culture Collection genome database: The Lactobacillus reuteri NCC 2613 GtfB.

Gangoiti J, van Leeuwen SS, Meng X, Duboux S, Vafiadi C, Pijning T, Dijkhuizen L.

Sci Rep. 2017 Aug 30;7(1):9947. doi: 10.1038/s41598-017-07190-z.


Biochemical Characterization of the Functional Roles of Residues in the Active Site of the β-Galactosidase from Bacillus circulans ATCC 31382.

Yin H, Pijning T, Meng X, Dijkhuizen L, van Leeuwen SS.

Biochemistry. 2017 Jun 20;56(24):3109-3118. doi: 10.1021/acs.biochem.7b00207. Epub 2017 Jun 5.


A new group of glycoside hydrolase family 13 α-amylases with an aberrant catalytic triad.

Sarian FD, Janeček Š, Pijning T, Ihsanawati, Nurachman Z, Radjasa OK, Dijkhuizen L, Natalia D, van der Maarel MJ.

Sci Rep. 2017 Mar 13;7:44230. doi: 10.1038/srep44230.


Engineering of the Bacillus circulans β-Galactosidase Product Specificity.

Yin H, Pijning T, Meng X, Dijkhuizen L, van Leeuwen SS.

Biochemistry. 2017 Feb 7;56(5):704-711. doi: 10.1021/acs.biochem.7b00032. Epub 2017 Jan 25.


Crystal Structure of 4,6-α-Glucanotransferase Supports Diet-Driven Evolution of GH70 Enzymes from α-Amylases in Oral Bacteria.

Bai Y, Gangoiti J, Dijkstra BW, Dijkhuizen L, Pijning T.

Structure. 2017 Feb 7;25(2):231-242. doi: 10.1016/j.str.2016.11.023. Epub 2017 Jan 5.


4,3-α-Glucanotransferase, a novel reaction specificity in glycoside hydrolase family 70 and clan GH-H.

Gangoiti J, van Leeuwen SS, Gerwig GJ, Duboux S, Vafiadi C, Pijning T, Dijkhuizen L.

Sci Rep. 2017 Jan 6;7:39761. doi: 10.1038/srep39761.


Structural determinants of alternating (α1 → 4) and (α1 → 6) linkage specificity in reuteransucrase of Lactobacillus reuteri.

Meng X, Pijning T, Dobruchowska JM, Yin H, Gerwig GJ, Dijkhuizen L.

Sci Rep. 2016 Oct 17;6:35261. doi: 10.1038/srep35261.


Characterization of the glucansucrase GTF180 W1065 mutant enzymes producing polysaccharides and oligosaccharides with altered linkage composition.

Meng X, Pijning T, Tietema M, Dobruchowska JM, Yin H, Gerwig GJ, Kralj S, Dijkhuizen L.

Food Chem. 2017 Feb 15;217:81-90. doi: 10.1016/j.foodchem.2016.08.087. Epub 2016 Aug 24.


Structure-function relationships of family GH70 glucansucrase and 4,6-α-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes.

Meng X, Gangoiti J, Bai Y, Pijning T, Van Leeuwen SS, Dijkhuizen L.

Cell Mol Life Sci. 2016 Jul;73(14):2681-706. doi: 10.1007/s00018-016-2245-7. Epub 2016 May 7. Review.


Lactobacillus reuteri Strains Convert Starch and Maltodextrins into Homoexopolysaccharides Using an Extracellular and Cell-Associated 4,6-α-Glucanotransferase.

Bai Y, Böger M, van der Kaaij RM, Woortman AJ, Pijning T, van Leeuwen SS, van Bueren AL, Dijkhuizen L.

J Agric Food Chem. 2016 Apr 13;64(14):2941-52. doi: 10.1021/acs.jafc.6b00714. Epub 2016 Mar 30.


Synthesis of New Hyperbranched α-Glucans from Sucrose by Lactobacillus reuteri 180 Glucansucrase Mutants.

Meng X, Dobruchowska JM, Pijning T, Gerwig GJ, Dijkhuizen L.

J Agric Food Chem. 2016 Jan 20;64(2):433-42. doi: 10.1021/acs.jafc.5b05161. Epub 2016 Jan 8.


The Exiguobacterium sibiricum 255-15 GtfC Enzyme Represents a Novel Glycoside Hydrolase 70 Subfamily of 4,6-α-Glucanotransferase Enzymes.

Gangoiti J, Pijning T, Dijkhuizen L.

Appl Environ Microbiol. 2015 Nov 20;82(2):756-66. doi: 10.1128/AEM.03420-15. Print 2016 Jan 15.


Characterization of the Functional Roles of Amino Acid Residues in Acceptor-binding Subsite +1 in the Active Site of the Glucansucrase GTF180 from Lactobacillus reuteri 180.

Meng X, Pijning T, Dobruchowska JM, Gerwig GJ, Dijkhuizen L.

J Biol Chem. 2015 Dec 11;290(50):30131-41. doi: 10.1074/jbc.M115.687558. Epub 2015 Oct 27.


Biochemical Characterization of the Lactobacillus reuteri Glycoside Hydrolase Family 70 GTFB Type of 4,6-α-Glucanotransferase Enzymes That Synthesize Soluble Dietary Starch Fibers.

Bai Y, van der Kaaij RM, Leemhuis H, Pijning T, van Leeuwen SS, Jin Z, Dijkhuizen L.

Appl Environ Microbiol. 2015 Oct;81(20):7223-32. doi: 10.1128/AEM.01860-15. Epub 2015 Aug 7.


Truncation of domain V of the multidomain glucansucrase GTF180 of Lactobacillus reuteri 180 heavily impairs its polysaccharide-synthesizing ability.

Meng X, Dobruchowska JM, Pijning T, Gerwig GJ, Kamerling JP, Dijkhuizen L.

Appl Microbiol Biotechnol. 2015 Jul;99(14):5885-94. doi: 10.1007/s00253-014-6361-8. Epub 2015 Jan 15.


Residue Leu940 has a crucial role in the linkage and reaction specificity of the glucansucrase GTF180 of the probiotic bacterium Lactobacillus reuteri 180.

Meng X, Dobruchowska JM, Pijning T, López CA, Kamerling JP, Dijkhuizen L.

J Biol Chem. 2014 Nov 21;289(47):32773-82. doi: 10.1074/jbc.M114.602524. Epub 2014 Oct 6.


Flexibility of truncated and full-length glucansucrase GTF180 enzymes from Lactobacillus reuteri 180.

Pijning T, Vujičić-Žagar A, Kralj S, Dijkhuizen L, Dijkstra BW.

FEBS J. 2014 May;281(9):2159-71. doi: 10.1111/febs.12769. Epub 2014 Mar 17.


Improved activity and pH stability of E. coli ATCC 11105 penicillin acylase by error-prone PCR.

Balci H, Ozturk MT, Pijning T, Ozturk SI, Gumusel F.

Appl Microbiol Biotechnol. 2014 May;98(10):4467-77. doi: 10.1007/s00253-013-5476-7. Epub 2014 Jan 5.


Improved activity and thermostability of Bacillus pumilus lipase by directed evolution.

Akbulut N, Tuzlakoğlu Öztürk M, Pijning T, İşsever Öztürk S, Gümüşel F.

J Biotechnol. 2013 Mar 10;164(1):123-9. doi: 10.1016/j.jbiotec.2012.12.016. Epub 2013 Jan 11.


Structure of the α-1,6/α-1,4-specific glucansucrase GTFA from Lactobacillus reuteri 121.

Pijning T, Vujičić-Žagar A, Kralj S, Dijkhuizen L, Dijkstra BW.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012 Dec 1;68(Pt 12):1448-54. doi: 10.1107/S1744309112044168. Epub 2012 Nov 14.


The role of conserved inulosucrase residues in the reaction and product specificity of Lactobacillus reuteri inulosucrase.

Anwar MA, Leemhuis H, Pijning T, Kralj S, Dijkstra BW, Dijkhuizen L.

FEBS J. 2012 Oct;279(19):3612-3621. doi: 10.1111/j.1742-4658.2012.08721.x. Epub 2012 Sep 3.


Glucansucrases: three-dimensional structures, reactions, mechanism, α-glucan analysis and their implications in biotechnology and food applications.

Leemhuis H, Pijning T, Dobruchowska JM, van Leeuwen SS, Kralj S, Dijkstra BW, Dijkhuizen L.

J Biotechnol. 2013 Jan 20;163(2):250-72. doi: 10.1016/j.jbiotec.2012.06.037. Epub 2012 Jul 10. Review.


4,6-α-Glucanotransferase activity occurs more widespread in Lactobacillus strains and constitutes a separate GH70 subfamily.

Leemhuis H, Dijkman WP, Dobruchowska JM, Pijning T, Grijpstra P, Kralj S, Kamerling JP, Dijkhuizen L.

Appl Microbiol Biotechnol. 2013 Jan;97(1):181-93. doi: 10.1007/s00253-012-3943-1. Epub 2012 Feb 25.


Biophysical characterization of mutants of Bacillus subtilis lipase evolved for thermostability: factors contributing to increased activity retention.

Augustyniak W, Brzezinska AA, Pijning T, Wienk H, Boelens R, Dijkstra BW, Reetz MT.

Protein Sci. 2012 Apr;21(4):487-97. doi: 10.1002/pro.2031. Epub 2012 Feb 29.


Functional and structural characterization of α-(1->2) branching sucrase derived from DSR-E glucansucrase.

Brison Y, Pijning T, Malbert Y, Fabre É, Mourey L, Morel S, Potocki-Véronèse G, Monsan P, Tranier S, Remaud-Siméon M, Dijkstra BW.

J Biol Chem. 2012 Mar 9;287(11):7915-24. doi: 10.1074/jbc.M111.305078. Epub 2012 Jan 18.


Crystal structure of inulosucrase from Lactobacillus: insights into the substrate specificity and product specificity of GH68 fructansucrases.

Pijning T, Anwar MA, Böger M, Dobruchowska JM, Leemhuis H, Kralj S, Dijkhuizen L, Dijkstra BW.

J Mol Biol. 2011 Sep 9;412(1):80-93. doi: 10.1016/j.jmb.2011.07.031. Epub 2011 Jul 23.


Crystal structure of a 117 kDa glucansucrase fragment provides insight into evolution and product specificity of GH70 enzymes.

Vujicic-Zagar A, Pijning T, Kralj S, López CA, Eeuwema W, Dijkhuizen L, Dijkstra BW.

Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21406-11. doi: 10.1073/pnas.1007531107. Epub 2010 Nov 30.


Thermus thermophilus glycoside hydrolase family 57 branching enzyme: crystal structure, mechanism of action, and products formed.

Palomo M, Pijning T, Booiman T, Dobruchowska JM, van der Vlist J, Kralj S, Planas A, Loos K, Kamerling JP, Dijkstra BW, van der Maarel MJ, Dijkhuizen L, Leemhuis H.

J Biol Chem. 2011 Feb 4;286(5):3520-30. doi: 10.1074/jbc.M110.179515. Epub 2010 Nov 19.


Crystal structure of the leucine aminopeptidase from Pseudomonas putida reveals the molecular basis for its enantioselectivity and broad substrate specificity.

Kale A, Pijning T, Sonke T, Dijkstra BW, Thunnissen AM.

J Mol Biol. 2010 May 21;398(5):703-14. doi: 10.1016/j.jmb.2010.03.042. Epub 2010 Mar 30.


The crystal structure of a hyperthermoactive exopolygalacturonase from Thermotoga maritima reveals a unique tetramer.

Pijning T, van Pouderoyen G, Kluskens L, van der Oost J, Dijkstra BW.

FEBS Lett. 2009 Nov 19;583(22):3665-70. doi: 10.1016/j.febslet.2009.10.047. Epub 2009 Oct 23.


Loop grafting of Bacillus subtilis lipase A: inversion of enantioselectivity.

Boersma YL, Pijning T, Bosma MS, van der Sloot AM, Godinho LF, Dröge MJ, Winter RT, van Pouderoyen G, Dijkstra BW, Quax WJ.

Chem Biol. 2008 Aug 25;15(8):782-9. doi: 10.1016/j.chembiol.2008.06.009.


A novel genetic selection system for improved enantioselectivity of Bacillus subtilis lipase A.

Boersma YL, Dröge MJ, van der Sloot AM, Pijning T, Cool RH, Dijkstra BW, Quax WJ.

Chembiochem. 2008 May 5;9(7):1110-5. doi: 10.1002/cbic.200700754.


A crystallographic study of Cys69Ala flavodoxin II from Azotobacter vinelandii: structural determinants of redox potential.

Alagaratnam S, van Pouderoyen G, Pijning T, Dijkstra BW, Cavazzini D, Rossi GL, Van Dongen WM, van Mierlo CP, van Berkel WJ, Canters GW.

Protein Sci. 2005 Sep;14(9):2284-95.


Crystal structure and carbohydrate-binding properties of the human cartilage glycoprotein-39.

Fusetti F, Pijning T, Kalk KH, Bos E, Dijkstra BW.

J Biol Chem. 2003 Sep 26;278(39):37753-60. Epub 2003 Jul 8.


Crystal structure of the copper-containing quercetin 2,3-dioxygenase from Aspergillus japonicus.

Fusetti F, Schröter KH, Steiner RA, van Noort PI, Pijning T, Rozeboom HJ, Kalk KH, Egmond MR, Dijkstra BW.

Structure. 2002 Feb;10(2):259-68.


The three-dimensional structure of the nitrogen regulatory protein IIANtr from Escherichia coli.

Bordo D, van Monfort RL, Pijning T, Kalk KH, Reizer J, Saier MH Jr, Dijkstra BW.

J Mol Biol. 1998 May 29;279(1):245-55.


The structure of the Escherichia coli phosphotransferase IIAmannitol reveals a novel fold with two conformations of the active site.

van Montfort RL, Pijning T, Kalk KH, Hangyi I, Kouwijzer ML, Robillard GT, Dijkstra BW.

Structure. 1998 Mar 15;6(3):377-88.


The structure of an energy-coupling protein from bacteria, IIBcellobiose, reveals similarity to eukaryotic protein tyrosine phosphatases.

van Montfort RL, Pijning T, Kalk KH, Reizer J, Saier MH Jr, Thunnissen MM, Robillard GT, Dijkstra BW.

Structure. 1997 Feb 15;5(2):217-25.


Crystallization of enzyme IIB of the cellobiose-specific phosphotransferase system of Escherichia coli.

van Montfort RL, Pijning T, Kalk KH, Schuurman-Wolters GK, Reizer J, Saier MH Jr, Robillard G, Dijkstra BW.

J Mol Biol. 1994 Jun 17;239(4):588-90.


Influence of albumin on the net sinusoidal efflux of the organic anion dibromosulfophthalein from rat liver.

Nijssen HM, Pijning T, Meijer DK, Groothuis GM.

Hepatology. 1992 Feb;15(2):302-9.


Supplemental Content

Loading ...
Support Center