Sort by
Items per page

Send to

Choose Destination

Search results

Items: 15


Neuronal-specific proteasome augmentation via Prosβ5 overexpression extends lifespan and reduces age-related cognitive decline.

Munkácsy E, Chocron ES, Quintanilla L, Gendron CM, Pletcher SD, Pickering AM.

Aging Cell. 2019 Oct;18(5):e13005. doi: 10.1111/acel.13005. Epub 2019 Jul 23.


Proline- and Arginine-Rich Peptides as Flexible Allosteric Modulators of Human Proteasome Activity.

Giżyńska M, Witkowska J, Karpowicz P, Rostankowski R, Chocron ES, Pickering AM, Osmulski P, Gaczynska M, Jankowska E.

J Med Chem. 2019 Jan 10;62(1):359-370. doi: 10.1021/acs.jmedchem.8b01025. Epub 2018 Dec 3.


Cause or casualty: The role of mitochondrial DNA in aging and age-associated disease.

Chocron ES, Munkácsy E, Pickering AM.

Biochim Biophys Acta Mol Basis Dis. 2019 Feb 1;1865(2):285-297. doi: 10.1016/j.bbadis.2018.09.035. Epub 2018 Nov 9. Review.


Mitochondrial thioredoxin reductase 2 is elevated in long-lived primate as well as rodent species and extends fly mean lifespan.

Pickering AM, Lehr M, Gendron CM, Pletcher SD, Miller RA.

Aging Cell. 2017 Aug;16(4):683-692. doi: 10.1111/acel.12596. Epub 2017 May 5.


Lifespan of mice and primates correlates with immunoproteasome expression.

Pickering AM, Lehr M, Miller RA.

J Clin Invest. 2015 May;125(5):2059-68. doi: 10.1172/JCI80514. Epub 2015 Apr 13.


Fibroblasts From Longer-Lived Species of Primates, Rodents, Bats, Carnivores, and Birds Resist Protein Damage.

Pickering AM, Lehr M, Kohler WJ, Han ML, Miller RA.

J Gerontol A Biol Sci Med Sci. 2015 Jul;70(7):791-9. doi: 10.1093/gerona/glu115. Epub 2014 Jul 28.


Oxidative stress adaptation with acute, chronic, and repeated stress.

Pickering AM, Vojtovich L, Tower J, A Davies KJ.

Free Radic Biol Med. 2013 Feb;55:109-18. doi: 10.1016/j.freeradbiomed.2012.11.001. Epub 2012 Nov 9.


A conserved role for the 20S proteasome and Nrf2 transcription factor in oxidative stress adaptation in mammals, Caenorhabditis elegans and Drosophila melanogaster.

Pickering AM, Staab TA, Tower J, Sieburth D, Davies KJ.

J Exp Biol. 2013 Feb 15;216(Pt 4):543-53. doi: 10.1242/jeb.074757. Epub 2012 Oct 4.


Degradation of damaged proteins: the main function of the 20S proteasome.

Pickering AM, Davies KJ.

Prog Mol Biol Transl Sci. 2012;109:227-48. doi: 10.1016/B978-0-12-397863-9.00006-7. Review.


Differential roles of proteasome and immunoproteasome regulators Pa28αβ, Pa28γ and Pa200 in the degradation of oxidized proteins.

Pickering AM, Davies KJ.

Arch Biochem Biophys. 2012 Jul 15;523(2):181-90. doi: 10.1016/ Epub 2012 Apr 30.


Nrf2-dependent induction of proteasome and Pa28αβ regulator are required for adaptation to oxidative stress.

Pickering AM, Linder RA, Zhang H, Forman HJ, Davies KJ.

J Biol Chem. 2012 Mar 23;287(13):10021-31. doi: 10.1074/jbc.M111.277145. Epub 2012 Feb 3.


A simple fluorescence labeling method for studies of protein oxidation, protein modification, and proteolysis.

Pickering AM, Davies KJ.

Free Radic Biol Med. 2012 Jan 15;52(2):239-46. doi: 10.1016/j.freeradbiomed.2011.08.018. Epub 2011 Sep 14.


HSP70 mediates dissociation and reassociation of the 26S proteasome during adaptation to oxidative stress.

Grune T, Catalgol B, Licht A, Ermak G, Pickering AM, Ngo JK, Davies KJ.

Free Radic Biol Med. 2011 Oct 1;51(7):1355-64. doi: 10.1016/j.freeradbiomed.2011.06.015. Epub 2011 Jun 24.


The immunoproteasome, the 20S proteasome and the PA28αβ proteasome regulator are oxidative-stress-adaptive proteolytic complexes.

Pickering AM, Koop AL, Teoh CY, Ermak G, Grune T, Davies KJ.

Biochem J. 2010 Dec 15;432(3):585-94. doi: 10.1042/BJ20100878.


Risk management tips for video technology.

Pickering AM.

J Healthc Risk Manag. 1995 Winter;15(1):16-9.


Supplemental Content

Loading ...
Support Center