Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 53

1.

Variability in Assembly of Degradation Operons for Naphthalene and its derivative, Carbaryl, Suggests Mobilization through Horizontal Gene Transfer.

Phale PS, Shah BA, Malhotra H.

Genes (Basel). 2019 Jul 27;10(8). pii: E569. doi: 10.3390/genes10080569. Review.

2.

Nitrogen-dependent induction of atrazine degradation pathway in Pseudomonas sp. strain AKN5.

Sharma A, Kalyani P, Trivedi VD, Kapley A, Phale PS.

FEMS Microbiol Lett. 2019 Jan 1;366(1). doi: 10.1093/femsle/fny277.

PMID:
30500940
3.

Carbaryl as a Carbon and Nitrogen Source: an Inducible Methylamine Metabolic Pathway at the Biochemical and Molecular Levels in Pseudomonas sp. Strain C5pp.

Kamini, Sharma R, Punekar NS, Phale PS.

Appl Environ Microbiol. 2018 Nov 30;84(24). pii: e01866-18. doi: 10.1128/AEM.01866-18. Print 2018 Dec 15.

4.

Structural modulation of a periplasmic sugar-binding protein probes into its evolutionary ancestry.

Pandey S, Phale PS, Bhaumik P.

J Struct Biol. 2018 Dec;204(3):498-506. doi: 10.1016/j.jsb.2018.09.006. Epub 2018 Sep 20.

PMID:
30244006
5.

Compartmentalization of the Carbaryl Degradation Pathway: Molecular Characterization of Inducible Periplasmic Carbaryl Hydrolase from Pseudomonas spp.

Kamini, Shetty D, Trivedi VD, Varunjikar M, Phale PS.

Appl Environ Microbiol. 2018 Jan 2;84(2). pii: e02115-17. doi: 10.1128/AEM.02115-17. Print 2018 Jan 15.

6.

Transcriptional Modulation of Transport- and Metabolism-Associated Gene Clusters Leading to Utilization of Benzoate in Preference to Glucose in Pseudomonas putida CSV86.

Choudhary A, Modak A, Apte SK, Phale PS.

Appl Environ Microbiol. 2017 Sep 15;83(19). pii: e01280-17. doi: 10.1128/AEM.01280-17. Print 2017 Oct 1.

7.

Benzoate transport in Pseudomonas putida CSV86.

Choudhary A, Purohit H, Phale PS.

FEMS Microbiol Lett. 2017 Jul 3;364(12). doi: 10.1093/femsle/fnx118.

PMID:
28591829
8.

Insights into metabolism and sodium chloride adaptability of carbaryl degrading halotolerant Pseudomonas sp. strain C7.

Trivedi VD, Bharadwaj A, Varunjikar MS, Singha AK, Upadhyay P, Gautam K, Phale PS.

Arch Microbiol. 2017 Aug;199(6):907-916. doi: 10.1007/s00203-017-1363-4. Epub 2017 Apr 3.

PMID:
28374062
9.

Erratum: Insights into functional and evolutionary analysis of carbaryl metabolic pathway from Pseudomonas sp. strain C5pp.

Trivedi VD, Jangir PK, Sharma R, Phale PS.

Sci Rep. 2017 Mar 30;7:40899. doi: 10.1038/srep40899. No abstract available.

10.

Carbon Source-Dependent Inducible Metabolism of Veratryl Alcohol and Ferulic Acid in Pseudomonas putida CSV86.

Mohan K, Phale PS.

Appl Environ Microbiol. 2017 Mar 31;83(8). pii: e03326-16. doi: 10.1128/AEM.03326-16. Print 2017 Apr 15.

11.

Insights into functional and evolutionary analysis of carbaryl metabolic pathway from Pseudomonas sp. strain C5pp.

Trivedi VD, Jangir PK, Sharma R, Phale PS.

Sci Rep. 2016 Dec 7;6:38430. doi: 10.1038/srep38430. Erratum in: Sci Rep. 2017 Mar 30;7:40899.

12.

Draft Genome Sequence of Carbaryl-Degrading Soil Isolate Pseudomonas sp. Strain C5pp.

Trivedi VD, Jangir PK, Sharma R, Phale PS.

Genome Announc. 2016 Jun 9;4(3). pii: e00526-16. doi: 10.1128/genomeA.00526-16.

13.

High Resolution Structures of Periplasmic Glucose-binding Protein of Pseudomonas putida CSV86 Reveal Structural Basis of Its Substrate Specificity.

Pandey S, Modak A, Phale PS, Bhaumik P.

J Biol Chem. 2016 Apr 8;291(15):7844-57. doi: 10.1074/jbc.M115.697268. Epub 2016 Feb 9.

14.

Analysis of preference for carbon source utilization among three strains of aromatic compounds degrading Pseudomonas.

Karishma M, Trivedi VD, Choudhary A, Mhatre A, Kambli P, Desai J, Phale PS.

FEMS Microbiol Lett. 2015 Oct;362(20). pii: fnv139. doi: 10.1093/femsle/fnv139. Epub 2015 Aug 26.

PMID:
26316546
15.

Biochemical Characterization of Inducible 'Reductase' Component of Benzoate Dioxygenase and Phthalate Isomer Dioxygenases from Pseudomonas aeruginosa strain PP4.

Karandikar R, Badri A, Phale PS.

Appl Biochem Biotechnol. 2015 Sep;177(2):318-33. doi: 10.1007/s12010-015-1744-6. Epub 2015 Jul 23.

PMID:
26201480
16.

Kinetic and spectroscopic characterization of 1-naphthol 2-hydroxylase from Pseudomonas sp. strain C5.

Trivedi VD, Majhi P, Phale PS.

Appl Biochem Biotechnol. 2014 Apr;172(8):3964-77. doi: 10.1007/s12010-014-0815-4. Epub 2014 Mar 6.

PMID:
24599669
17.

Pseudomonas putida CSV86: a candidate genome for genetic bioaugmentation.

Paliwal V, Raju SC, Modak A, Phale PS, Purohit HJ.

PLoS One. 2014 Jan 24;9(1):e84000. doi: 10.1371/journal.pone.0084000. eCollection 2014.

18.
19.
20.

Metabolic regulation and chromosomal localization of carbaryl degradation pathway in Pseudomonas sp. strains C4, C5 and C6.

Singh R, Trivedi VD, Phale PS.

Arch Microbiol. 2013 Aug;195(8):521-35. doi: 10.1007/s00203-013-0903-9. Epub 2013 Jun 2.

PMID:
23728496
21.

Genome Sequence of Naphthalene-Degrading Soil Bacterium Pseudomonas putida CSV86.

Phale PS, Paliwal V, Raju SC, Modak A, Purohit HJ.

Genome Announc. 2013 Jan;1(1). pii: e00234-12. doi: 10.1128/genomeA.00234-12. Epub 2013 Feb 21.

22.

Assessment of the metabolic capacity and adaptability of aromatic hydrocarbon degrading strain Pseudomonas putida CSV86 in aerobic chemostat culture.

Nigam A, Phale PS, Wangikar PP.

Bioresour Technol. 2012 Jun;114:484-91. doi: 10.1016/j.biortech.2012.03.007. Epub 2012 Mar 14.

PMID:
22494573
23.

Purification and characterization of benzyl alcohol- and benzaldehyde- dehydrogenase from Pseudomonas putida CSV86.

Shrivastava R, Basu A, Phale PS.

Arch Microbiol. 2011 Aug;193(8):553-63. doi: 10.1007/s00203-011-0697-6. Epub 2011 Mar 30.

PMID:
21448720
24.

Repression of the glucose-inducible outer-membrane protein OprB during utilization of aromatic compounds and organic acids in Pseudomonas putida CSV86.

Shrivastava R, Basu B, Godbole A, Mathew MK, Apte SK, Phale PS.

Microbiology. 2011 May;157(Pt 5):1531-40. doi: 10.1099/mic.0.047191-0. Epub 2011 Feb 17.

PMID:
21330430
25.

1-naphthol 2-hydroxylase from Pseudomonas sp. strain C6: purification, characterization and chemical modification studies.

Sah S, Phale PS.

Biodegradation. 2011 Jun;22(3):517-26. doi: 10.1007/s10532-010-9424-2. Epub 2010 Oct 14.

PMID:
20949369
26.

Biodegradation of phenanthrene by Alcaligenes sp. strain PPH: partial purification and characterization of 1-hydroxy-2-naphthoic acid hydroxylase.

Deveryshetty J, Phale PS.

FEMS Microbiol Lett. 2010 Oct;311(1):93-101. doi: 10.1111/j.1574-6968.2010.02079.x. Epub 2010 Aug 18.

28.

Biodegradation of phenanthrene by Pseudomonas sp. strain PPD: purification and characterization of 1-hydroxy-2-naphthoic acid dioxygenase.

Deveryshetty J, Phale PS.

Microbiology. 2009 Sep;155(Pt 9):3083-91. doi: 10.1099/mic.0.030460-0. Epub 2009 Jul 2.

PMID:
19574301
29.
30.

Bacterial degradation of phthalate isomers and their esters.

Vamsee-Krishna C, Phale PS.

Indian J Microbiol. 2008 Mar;48(1):19-34. doi: 10.1007/s12088-008-0003-8. Epub 2008 May 1.

31.

Metabolic diversity in bacterial degradation of aromatic compounds.

Phale PS, Basu A, Majhi PD, Deveryshetty J, Vamsee-Krishna C, Shrivastava R.

OMICS. 2007 Fall;11(3):252-79. Review.

PMID:
17883338
32.

Modulation of glucose transport causes preferential utilization of aromatic compounds in Pseudomonas putida CSV86.

Basu A, Shrivastava R, Basu B, Apte SK, Phale PS.

J Bacteriol. 2007 Nov;189(21):7556-62. Epub 2007 Sep 7.

33.

Conjugative transfer of preferential utilization of aromatic compounds from Pseudomonas putida CSV86.

Basu A, Phale PS.

Biodegradation. 2008 Feb;19(1):83-92. Epub 2007 May 9.

PMID:
17487554
34.

Sequential utilization of substrates by Pseudomonas putida CSV86: signatures of intermediate metabolites and online measurements.

Basu A, Das D, Bapat P, Wangikar PP, Phale PS.

Microbiol Res. 2009;164(4):429-37. Epub 2007 Apr 30.

35.

Purification and characterization of 1-naphthol-2-hydroxylase from carbaryl-degrading Pseudomonas strain c4.

Swetha VP, Basu A, Phale PS.

J Bacteriol. 2007 Apr;189(7):2660-6. Epub 2007 Jan 19.

36.

Metabolism of 2-, 3- and 4-hydroxybenzoates by soil isolates Alcaligenes sp. strain PPH and Pseudomonas sp. strain PPD.

Deveryshetty J, Suvekbala V, Varadamshetty G, Phale PS.

FEMS Microbiol Lett. 2007 Mar;268(1):59-66. Epub 2006 Dec 13.

37.
38.

Biodegradation of phthalate isomers by Pseudomonas aeruginosa PP4, Pseudomonas sp. PPD and Acinetobacter lwoffii ISP4.

Vamsee-Krishna C, Mohan Y, Phale PS.

Appl Microbiol Biotechnol. 2006 Oct;72(6):1263-9. Epub 2006 Apr 11.

PMID:
16607524
39.

Preferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86.

Basu A, Apte SK, Phale PS.

Appl Environ Microbiol. 2006 Mar;72(3):2226-30.

40.
41.

O-phthalic acid, a dead-end product in one of the two pathways of phenanthrene degradation in Pseudomonas sp. strain PP2.

Krishnan S, Prabhu Y, Phale PS.

Indian J Biochem Biophys. 2004 Oct;41(5):227-32.

PMID:
22900278
42.

Combined sequence and structure analysis of the fungal laccase family.

Kumar SV, Phale PS, Durani S, Wangikar PP.

Biotechnol Bioeng. 2003 Aug 20;83(4):386-94.

PMID:
12800133
43.
44.

Metabolism of benzyl alcohol via catechol ortho-pathway in methylnaphthalene-degrading Pseudomonas putida CSV86.

Basu A, Dixit SS, Phale PS.

Appl Microbiol Biotechnol. 2003 Oct;62(5-6):579-85. Epub 2003 Apr 10.

PMID:
12687299
45.

Voltage-controlled gating at the intracellular entrance to a hyperpolarization-activated cation channel.

Rothberg BS, Shin KS, Phale PS, Yellen G.

J Gen Physiol. 2002 Jan;119(1):83-91.

46.

Role of charged residues at the OmpF porin channel constriction probed by mutagenesis and simulation.

Phale PS, Philippsen A, Widmer C, Phale VP, Rosenbusch JP, Schirmer T.

Biochemistry. 2001 May 29;40(21):6319-25.

PMID:
11371193
47.

Brownian dynamics simulation of ion flow through porin channels.

Schirmer T, Phale PS.

J Mol Biol. 1999 Dec 17;294(5):1159-67.

PMID:
10600374
48.

Stability of trimeric OmpF porin: the contributions of the latching loop L2.

Phale PS, Philippsen A, Kiefhaber T, Koebnik R, Phale VP, Schirmer T, Rosenbusch JP.

Biochemistry. 1998 Nov 10;37(45):15663-70.

PMID:
9843370
49.

Identification and characterization of two quiescent porin genes, nmpC and ompN, in Escherichia coli BE.

Prilipov A, Phale PS, Koebnik R, Widmer C, Rosenbusch JP.

J Bacteriol. 1998 Jul;180(13):3388-92.

50.

Coupling site-directed mutagenesis with high-level expression: large scale production of mutant porins from E. coli.

Prilipov A, Phale PS, Van Gelder P, Rosenbusch JP, Koebnik R.

FEMS Microbiol Lett. 1998 Jun 1;163(1):65-72.

Supplemental Content

Loading ...
Support Center