Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 12

1.

A designed heme-[4Fe-4S] metalloenzyme catalyzes sulfite reduction like the native enzyme.

Mirts EN, Petrik ID, Hosseinzadeh P, Nilges MJ, Lu Y.

Science. 2018 Sep 14;361(6407):1098-1101. doi: 10.1126/science.aat8474.

2.

Manganese and Cobalt in the Nonheme-Metal-Binding Site of a Biosynthetic Model of Heme-Copper Oxidase Superfamily Confer Oxidase Activity through Redox-Inactive Mechanism.

Reed JH, Shi Y, Zhu Q, Chakraborty S, Mirts EN, Petrik ID, Bhagi-Damodaran A, Ross M, Moënne-Loccoz P, Zhang Y, Lu Y.

J Am Chem Soc. 2017 Sep 6;139(35):12209-12218. doi: 10.1021/jacs.7b05800. Epub 2017 Aug 25.

3.

Effect of circular permutation on the structure and function of type 1 blue copper center in azurin.

Yu Y, Petrik ID, Chacón KN, Hosseinzadeh P, Chen H, Blackburn NJ, Lu Y.

Protein Sci. 2017 Feb;26(2):218-226. doi: 10.1002/pro.3071. Epub 2016 Nov 4.

4.

Design of Heteronuclear Metalloenzymes.

Bhagi-Damodaran A, Hosseinzadeh P, Mirts E, Reed J, Petrik ID, Lu Y.

Methods Enzymol. 2016;580:501-37. doi: 10.1016/bs.mie.2016.05.050. Epub 2016 Jul 26.

5.

Spectroscopic and Crystallographic Evidence for the Role of a Water-Containing H-Bond Network in Oxidase Activity of an Engineered Myoglobin.

Petrik ID, Davydov R, Ross M, Zhao X, Hoffman B, Lu Y.

J Am Chem Soc. 2016 Feb 3;138(4):1134-7. doi: 10.1021/jacs.5b12004. Epub 2016 Jan 20.

6.

A Designed Metalloenzyme Achieving the Catalytic Rate of a Native Enzyme.

Yu Y, Cui C, Liu X, Petrik ID, Wang J, Lu Y.

J Am Chem Soc. 2015 Sep 16;137(36):11570-3. doi: 10.1021/jacs.5b07119. Epub 2015 Sep 8.

7.

Recent advances in biosynthetic modeling of nitric oxide reductases and insights gained from nuclear resonance vibrational and other spectroscopic studies.

Chakraborty S, Reed J, Sage JT, Branagan NC, Petrik ID, Miner KD, Hu MY, Zhao J, Alp EE, Lu Y.

Inorg Chem. 2015 Oct 5;54(19):9317-29. doi: 10.1021/acs.inorgchem.5b01105. Epub 2015 Aug 14.

8.

Systematic tuning of heme redox potentials and its effects on O2 reduction rates in a designed oxidase in myoglobin.

Bhagi-Damodaran A, Petrik ID, Marshall NM, Robinson H, Lu Y.

J Am Chem Soc. 2014 Aug 27;136(34):11882-5. doi: 10.1021/ja5054863. Epub 2014 Aug 18.

9.

Metalloenzyme design and engineering through strategic modifications of native protein scaffolds.

Petrik ID, Liu J, Lu Y.

Curr Opin Chem Biol. 2014 Apr;19:67-75. doi: 10.1016/j.cbpa.2014.01.006. Epub 2014 Feb 8. Review.

10.

Spectroscopic and computational study of a nonheme iron nitrosyl center in a biosynthetic model of nitric oxide reductase.

Chakraborty S, Reed J, Ross M, Nilges MJ, Petrik ID, Ghosh S, Hammes-Schiffer S, Sage JT, Zhang Y, Schulz CE, Lu Y.

Angew Chem Int Ed Engl. 2014 Feb 24;53(9):2417-21. doi: 10.1002/anie.201308431. Epub 2014 Jan 31.

11.

A designed functional metalloenzyme that reduces O2 to H2O with over one thousand turnovers.

Miner KD, Mukherjee A, Gao YG, Null EL, Petrik ID, Zhao X, Yeung N, Robinson H, Lu Y.

Angew Chem Int Ed Engl. 2012 Jun 4;51(23):5589-92. doi: 10.1002/anie.201201981. Epub 2012 Apr 26. No abstract available.

12.

Comment on "NMR spectroscopic studies of cellobiose solvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids" by J. Zhang, H. Zhang, J. Wu, J. Zhang, J. He and J. Xiang, Phys. Chem. Chem. Phys., 2010, 12, 1941.

Remsing RC, Petrik ID, Liu Z, Moyna G.

Phys Chem Chem Phys. 2010 Nov 28;12(44):14827-8; discussion 14829-30. doi: 10.1039/c004203j. Epub 2010 Oct 19. No abstract available.

PMID:
20959901

Supplemental Content

Loading ...
Support Center