Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 52

1.

Microtubule glycylation promotes attachment of basal bodies to the cell cortex.

Junker AD, Soh AWJ, O'Toole ET, Meehl JB, Guha M, Winey M, Honts JE, Gaertig J, Pearson CG.

J Cell Sci. 2019 Aug 7;132(15). pii: jcs233726. doi: 10.1242/jcs.233726.

PMID:
31243050
2.

CEP135 isoform dysregulation promotes centrosome amplification in breast cancer cells.

Ganapathi Sankaran D, Stemm-Wolf AJ, Pearson CG.

Mol Biol Cell. 2019 May 1;30(10):1230-1244. doi: 10.1091/mbc.E18-10-0674. Epub 2019 Feb 27.

3.

Deubiquitylase USP9X maintains centriolar satellite integrity by stabilizing pericentriolar material 1 protein.

Han KJ, Wu Z, Pearson CG, Peng J, Song K, Liu CW.

J Cell Sci. 2019 Jan 22;132(2). pii: jcs221663. doi: 10.1242/jcs.221663.

4.

Proteins that control the geometry of microtubules at the ends of cilia.

Louka P, Vasudevan KK, Guha M, Joachimiak E, Wloga D, Tomasi RF, Baroud CN, Dupuis-Williams P, Galati DF, Pearson CG, Rice LM, Moresco JJ, Yates JR 3rd, Jiang YY, Lechtreck K, Dentler W, Gaertig J.

J Cell Biol. 2018 Dec 3;217(12):4298-4313. doi: 10.1083/jcb.201804141. Epub 2018 Sep 14.

5.

Trisomy 21 Represses Cilia Formation and Function.

Galati DF, Sullivan KD, Pham AT, Espinosa JM, Pearson CG.

Dev Cell. 2018 Sep 10;46(5):641-650.e6. doi: 10.1016/j.devcel.2018.07.008. Epub 2018 Aug 9.

6.

Idiopathic Scoliosis Families Highlight Actin-Based and Microtubule-Based Cellular Projections and Extracellular Matrix in Disease Etiology.

Baschal EE, Terhune EA, Wethey CI, Baschal RM, Robinson KD, Cuevas MT, Pradhan S, Sutphin BS, Taylor MRG, Gowan K, Pearson CG, Niswander LA, Jones KL, Miller NH.

G3 (Bethesda). 2018 Jul 31;8(8):2663-2672. doi: 10.1534/g3.118.200290.

7.

CD147: a small molecule transporter ancillary protein at the crossroad of multiple hallmarks of cancer and metabolic reprogramming.

Kendrick AA, Schafer J, Dzieciatkowska M, Nemkov T, D'Alessandro A, Neelakantan D, Ford HL, Pearson CG, Weekes CD, Hansen KC, Eisenmesser EZ.

Oncotarget. 2017 Jan 24;8(4):6742-6762. doi: 10.18632/oncotarget.14272.

8.

Subdistal Appendages Stabilize the Ups and Downs of Ciliary Life.

Galati DF, Mitchell BJ, Pearson CG.

Dev Cell. 2016 Nov 21;39(4):387-389. doi: 10.1016/j.devcel.2016.11.006.

9.

Asymmetrically localized proteins stabilize basal bodies against ciliary beating forces.

Bayless BA, Galati DF, Junker AD, Backer CB, Gaertig J, Pearson CG.

J Cell Biol. 2016 Nov 21;215(4):457-466. Epub 2016 Nov 2.

10.

Molecular Determinants of Tubulin's C-Terminal Tail Conformational Ensemble.

Wall KP, Pagratis M, Armstrong G, Balsbaugh JL, Verbeke E, Pearson CG, Hough LE.

ACS Chem Biol. 2016 Nov 18;11(11):2981-2990. Epub 2016 Sep 28.

11.

Tetrahymena as a Unicellular Model Eukaryote: Genetic and Genomic Tools.

Ruehle MD, Orias E, Pearson CG.

Genetics. 2016 Jun;203(2):649-65. doi: 10.1534/genetics.114.169748. Review.

12.

Tetrahymena Poc1 ensures proper intertriplet microtubule linkages to maintain basal body integrity.

Meehl JB, Bayless BA, Giddings TH Jr, Pearson CG, Winey M.

Mol Biol Cell. 2016 Aug 1;27(15):2394-403. doi: 10.1091/mbc.E16-03-0165. Epub 2016 Jun 1.

13.

miR-219 regulates neural progenitors by dampening apical Par protein-dependent Hedgehog signaling.

Hudish LI, Galati DF, Ravanelli AM, Pearson CG, Huang P, Appel B.

Development. 2016 Jul 1;143(13):2292-304. doi: 10.1242/dev.137844. Epub 2016 May 25.

14.

Assembly, molecular organization, and membrane-binding properties of development-specific septins.

Garcia G 3rd, Finnigan GC, Heasley LR, Sterling SM, Aggarwal A, Pearson CG, Nogales E, McMurray MA, Thorner J.

J Cell Biol. 2016 Feb 29;212(5):515-29. doi: 10.1083/jcb.201511029.

15.

Tetrahymena basal bodies.

Bayless BA, Galati DF, Pearson CG.

Cilia. 2016 Jan 19;5:1. doi: 10.1186/s13630-016-0022-8. eCollection 2015. Review.

16.

Automated image analysis reveals the dynamic 3-dimensional organization of multi-ciliary arrays.

Galati DF, Abuin DS, Tauber GA, Pham AT, Pearson CG.

Biol Open. 2015 Dec 23;5(1):20-31. doi: 10.1242/bio.014951.

17.

A Short CEP135 Splice Isoform Controls Centriole Duplication.

Dahl KD, Sankaran DG, Bayless BA, Pinter ME, Galati DF, Heasley LR, Giddings TH Jr, Pearson CG.

Curr Biol. 2015 Oct 5;25(19):2591-6. doi: 10.1016/j.cub.2015.08.039. Epub 2015 Sep 24.

18.

DisAp-dependent striated fiber elongation is required to organize ciliary arrays.

Galati DF, Bonney S, Kronenberg Z, Clarissa C, Yandell M, Elde NC, Jerka-Dziadosz M, Giddings TH, Frankel J, Pearson CG.

J Cell Biol. 2014 Dec 22;207(6):705-15. doi: 10.1083/jcb.201409123.

19.

Choosing sides--asymmetric centriole and basal body assembly.

Pearson CG.

J Cell Sci. 2014 Jul 1;127(Pt 13):2803-10. doi: 10.1242/jcs.151761. Epub 2014 Jun 3. Review.

20.

Extracellular vesicles secreted from cancer cell lines stimulate secretion of MMP-9, IL-6, TGF-β1 and EMMPRIN.

Redzic JS, Kendrick AA, Bahmed K, Dahl KD, Pearson CG, Robinson WA, Robinson SE, Graner MW, Eisenmesser EZ.

PLoS One. 2013 Aug 1;8(8):e71225. doi: 10.1371/journal.pone.0071225. Print 2013.

21.

Bld10/Cep135 stabilizes basal bodies to resist cilia-generated forces.

Bayless BA, Giddings TH Jr, Winey M, Pearson CG.

Mol Biol Cell. 2012 Dec;23(24):4820-32. doi: 10.1091/mbc.E12-08-0577. Epub 2012 Oct 31.

22.

CSAP localizes to polyglutamylated microtubules and promotes proper cilia function and zebrafish development.

Backer CB, Gutzman JH, Pearson CG, Cheeseman IM.

Mol Biol Cell. 2012 Jun;23(11):2122-30. doi: 10.1091/mbc.E11-11-0931. Epub 2012 Apr 4.

23.

Cytological analysis of Tetrahymena thermophila.

Winey M, Stemm-Wolf AJ, Giddings TH Jr, Pearson CG.

Methods Cell Biol. 2012;109:357-78. doi: 10.1016/B978-0-12-385967-9.00013-X. Review.

PMID:
22444152
24.

Comparative genomics of the pathogenic ciliate Ichthyophthirius multifiliis, its free-living relatives and a host species provide insights into adoption of a parasitic lifestyle and prospects for disease control.

Coyne RS, Hannick L, Shanmugam D, Hostetler JB, Brami D, Joardar VS, Johnson J, Radune D, Singh I, Badger JH, Kumar U, Saier M, Wang Y, Cai H, Gu J, Mather MW, Vaidya AB, Wilkes DE, Rajagopalan V, Asai DJ, Pearson CG, Findly RC, Dickerson HW, Wu M, Martens C, Van de Peer Y, Roos DS, Cassidy-Hanley DM, Clark TG.

Genome Biol. 2011 Oct 17;12(10):R100. doi: 10.1186/gb-2011-12-10-r100.

25.

A kinesin in command of primary ciliogenesis.

Pearson CG.

Cell. 2011 Jun 10;145(6):817-9. doi: 10.1016/j.cell.2011.05.023.

26.

Plk4/SAK/ZYG-1 in the regulation of centriole duplication.

Pearson CG, Winey M.

F1000 Biol Rep. 2010 Aug 9;2:58. doi: 10.3410/B2-58.

27.

Electron tomography and immuno-labeling of Tetrahymena thermophila basal bodies.

Giddings TH Jr, Meehl JB, Pearson CG, Winey M.

Methods Cell Biol. 2010;96:117-41. doi: 10.1016/S0091-679X(10)96006-8.

PMID:
20869521
28.

Model Convolution: A Computational Approach to Digital Image Interpretation.

Gardner MK, Sprague BL, Pearson CG, Cosgrove BD, Bicek AD, Bloom K, Salmon ED, Odde DJ.

Cell Mol Bioeng. 2010 Jun;3(2):163-170. Epub 2010 Feb 6.

29.

Basal body stability and ciliogenesis requires the conserved component Poc1.

Pearson CG, Osborn DP, Giddings TH Jr, Beales PL, Winey M.

J Cell Biol. 2009 Dec 14;187(6):905-20. doi: 10.1083/jcb.200908019.

30.

Basal body assembly in ciliates: the power of numbers.

Pearson CG, Winey M.

Traffic. 2009 May;10(5):461-71. doi: 10.1111/j.1600-0854.2009.00885.x. Epub 2009 Jan 24. Review.

31.

Basal body components exhibit differential protein dynamics during nascent basal body assembly.

Pearson CG, Giddings TH Jr, Winey M.

Mol Biol Cell. 2009 Feb;20(3):904-14. doi: 10.1091/mbc.E08-08-0835. Epub 2008 Dec 3.

32.

New Tetrahymena basal body protein components identify basal body domain structure.

Kilburn CL, Pearson CG, Romijn EP, Meehl JB, Giddings TH Jr, Culver BP, Yates JR 3rd, Winey M.

J Cell Biol. 2007 Sep 10;178(6):905-12. Epub 2007 Sep 4. Erratum in: J Cell Biol. 2007 Oct 8;179(1):167.

33.

Centrioles want to move out and make cilia.

Pearson CG, Culver BP, Winey M.

Dev Cell. 2007 Sep;13(3):319-21.

34.

IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy.

Beales PL, Bland E, Tobin JL, Bacchelli C, Tuysuz B, Hill J, Rix S, Pearson CG, Kai M, Hartley J, Johnson C, Irving M, Elcioglu N, Winey M, Tada M, Scambler PJ.

Nat Genet. 2007 Jun;39(6):727-9. Epub 2007 Apr 29.

PMID:
17468754
35.

Measuring nanometer scale gradients in spindle microtubule dynamics using model convolution microscopy.

Pearson CG, Gardner MK, Paliulis LV, Salmon ED, Odde DJ, Bloom K.

Mol Biol Cell. 2006 Sep;17(9):4069-79. Epub 2006 Jun 28.

36.

Tension-dependent regulation of microtubule dynamics at kinetochores can explain metaphase congression in yeast.

Gardner MK, Pearson CG, Sprague BL, Zarzar TR, Bloom K, Salmon ED, Odde DJ.

Mol Biol Cell. 2005 Aug;16(8):3764-75. Epub 2005 Jun 1.

37.

The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint.

De Antoni A, Pearson CG, Cimini D, Canman JC, Sala V, Nezi L, Mapelli M, Sironi L, Faretta M, Salmon ED, Musacchio A.

Curr Biol. 2005 Feb 8;15(3):214-25.

38.

Chemical genetics reveals a role for Mps1 kinase in kinetochore attachment during mitosis.

Jones MH, Huneycutt BJ, Pearson CG, Zhang C, Morgan G, Shokat K, Bloom K, Winey M.

Curr Biol. 2005 Jan 26;15(2):160-5.

39.

Stable kinetochore-microtubule attachment constrains centromere positioning in metaphase.

Pearson CG, Yeh E, Gardner M, Odde D, Salmon ED, Bloom K.

Curr Biol. 2004 Nov 9;14(21):1962-7.

40.

Dynamic microtubules lead the way for spindle positioning.

Pearson CG, Bloom K.

Nat Rev Mol Cell Biol. 2004 Jun;5(6):481-92. Review. No abstract available.

PMID:
15173827
41.

Enhanced mutagenic potential of 8-oxo-7,8-dihydroguanine when present within a clustered DNA damage site.

Pearson CG, Shikazono N, Thacker J, O'Neill P.

Nucleic Acids Res. 2004 Jan 9;32(1):263-70. Print 2004.

42.

Yeast kinetochores do not stabilize Stu2p-dependent spindle microtubule dynamics.

Pearson CG, Maddox PS, Zarzar TR, Salmon ED, Bloom K.

Mol Biol Cell. 2003 Oct;14(10):4181-95. Epub 2003 Jul 25.

43.

The Saccharomyces cerevisiae spindle pole body is a dynamic structure.

Yoder TJ, Pearson CG, Bloom K, Davis TN.

Mol Biol Cell. 2003 Aug;14(8):3494-505. Epub 2003 May 3.

44.

Mechanisms of microtubule-based kinetochore positioning in the yeast metaphase spindle.

Sprague BL, Pearson CG, Maddox PS, Bloom KS, Salmon ED, Odde DJ.

Biophys J. 2003 Jun;84(6):3529-46.

45.

beta-Tubulin C354 mutations that severely decrease microtubule dynamics do not prevent nuclear migration in yeast.

Gupta ML Jr, Bode CJ, Thrower DA, Pearson CG, Suprenant KA, Bloom KS, Himes RH.

Mol Biol Cell. 2002 Aug;13(8):2919-32.

46.

Control of microtubule dynamics by Stu2p is essential for spindle orientation and metaphase chromosome alignment in yeast.

Kosco KA, Pearson CG, Maddox PS, Wang PJ, Adams IR, Salmon ED, Bloom K, Huffaker TC.

Mol Biol Cell. 2001 Sep;12(9):2870-80.

47.
48.

Budding yeast chromosome structure and dynamics during mitosis.

Pearson CG, Maddox PS, Salmon ED, Bloom K.

J Cell Biol. 2001 Mar 19;152(6):1255-66.

49.

Dementias in Swedish twins.

Pedersen NL, Gatz M, Winblad B, Pearson CG, Berg S.

Prog Clin Biol Res. 1989;317:217-22. No abstract available.

PMID:
2602417
50.

Ageism revised and the provision of psychological services.

Gatz M, Pearson CG.

Am Psychol. 1988 Mar;43(3):184-8. No abstract available.

PMID:
3364855

Supplemental Content

Loading ...
Support Center