Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 49

1.

Photoswitching FRET to monitor protein-protein interactions.

Rainey KH, Patterson GH.

Proc Natl Acad Sci U S A. 2019 Jan 15;116(3):864-873. doi: 10.1073/pnas.1805333116. Epub 2018 Dec 31.

2.

Single-shot super-resolution total internal reflection fluorescence microscopy.

Guo M, Chandris P, Giannini JP, Trexler AJ, Fischer R, Chen J, Vishwasrao HD, Rey-Suarez I, Wu Y, Wu X, Waterman CM, Patterson GH, Upadhyaya A, Taraska JW, Shroff H.

Nat Methods. 2018 Jun;15(6):425-428. doi: 10.1038/s41592-018-0004-4. Epub 2018 May 7.

PMID:
29735999
3.

Superresolution Imaging Identifies That Conventional Trafficking Pathways Are Not Essential for Endoplasmic Reticulum to Outer Mitochondrial Membrane Protein Transport.

Salka K, Bhuvanendran S, Wilson K, Bozidis P, Mehta M, Rainey K, Sesaki H, Patterson GH, Jaiswal JK, Colberg-Poley AM.

Sci Rep. 2017 Feb 2;7(1):16. doi: 10.1038/s41598-017-00039-5.

4.

Axial superresolution via multiangle TIRF microscopy with sequential imaging and photobleaching.

Fu Y, Winter PW, Rojas R, Wang V, McAuliffe M, Patterson GH.

Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):4368-73. doi: 10.1073/pnas.1516715113. Epub 2016 Apr 1.

5.

ER trapping reveals Golgi enzymes continually revisit the ER through a recycling pathway that controls Golgi organization.

Sengupta P, Satpute-Krishnan P, Seo AY, Burnette DT, Patterson GH, Lippincott-Schwartz J.

Proc Natl Acad Sci U S A. 2015 Dec 8;112(49):E6752-61. doi: 10.1073/pnas.1520957112. Epub 2015 Nov 23.

6.

Two-photon-like microscopy with orders-of-magnitude lower illumination intensity via two-step fluorescence.

Ingaramo M, York AG, Andrade EJ, Rainey K, Patterson GH.

Nat Commun. 2015 Sep 3;6:8184. doi: 10.1038/ncomms9184.

7.

4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors.

Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, Smith JP, Walker AJ, Kohler ME, Venkateshwara VR, Kaplan RN, Patterson GH, Fry TJ, Orentas RJ, Mackall CL.

Nat Med. 2015 Jun;21(6):581-90. doi: 10.1038/nm.3838. Epub 2015 May 4.

8.

Superresolution imaging of viral protein trafficking.

Colberg-Poley AM, Patterson GH, Salka K, Bhuvanendran S, Yang D, Jaiswal JK.

Med Microbiol Immunol. 2015 Jun;204(3):449-60. doi: 10.1007/s00430-015-0395-0. Epub 2015 Feb 28. Review.

9.

Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples.

Winter PW, York AG, Nogare DD, Ingaramo M, Christensen R, Chitnis A, Patterson GH, Shroff H.

Optica. 2014 Sep 20;1(3):181-191.

10.

Accounting for photophysical processes and specific signal intensity changes in fluorescence-detected sedimentation velocity.

Zhao H, Ma J, Ingaramo M, Andrade E, MacDonald J, Ramsay G, Piszczek G, Patterson GH, Schuck P.

Anal Chem. 2014 Sep 16;86(18):9286-92. doi: 10.1021/ac502478a. Epub 2014 Aug 28.

11.

Superresolution imaging of human cytomegalovirus vMIA localization in sub-mitochondrial compartments.

Bhuvanendran S, Salka K, Rainey K, Sreetama SC, Williams E, Leeker M, Prasad V, Boyd J, Patterson GH, Jaiswal JK, Colberg-Poley AM.

Viruses. 2014 Apr 9;6(4):1612-36. doi: 10.3390/v6041612.

12.

Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue.

Ingaramo M, York AG, Wawrzusin P, Milberg O, Hong A, Weigert R, Shroff H, Patterson GH.

Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5254-9. doi: 10.1073/pnas.1314447111. Epub 2014 Mar 24.

13.

Richardson-Lucy deconvolution as a general tool for combining images with complementary strengths.

Ingaramo M, York AG, Hoogendoorn E, Postma M, Shroff H, Patterson GH.

Chemphyschem. 2014 Mar 17;15(4):794-800. doi: 10.1002/cphc.201300831. Epub 2014 Jan 16.

14.

Tools for the quantitative analysis of sedimentation boundaries detected by fluorescence optical analytical ultracentrifugation.

Zhao H, Casillas E Jr, Shroff H, Patterson GH, Schuck P.

PLoS One. 2013 Oct 18;8(10):e77245. doi: 10.1371/journal.pone.0077245. eCollection 2013.

15.

Analysis of high-affinity assembly for AMPA receptor amino-terminal domains.

Zhao H, Berger AJ, Brown PH, Kumar J, Balbo A, May CA, Casillas E Jr, Laue TM, Patterson GH, Mayer ML, Schuck P.

J Gen Physiol. 2013 Jun;141(6):747-9. No abstract available.

16.

NHERF2 protein mobility rate is determined by a unique C-terminal domain that is also necessary for its regulation of NHE3 protein in OK cells.

Yang J, Singh V, Cha B, Chen TE, Sarker R, Murtazina R, Jin S, Zachos NC, Patterson GH, Tse CM, Kovbasnjuk O, Li X, Donowitz M.

J Biol Chem. 2013 Jun 7;288(23):16960-74. doi: 10.1074/jbc.M113.470799. Epub 2013 Apr 23.

17.

Analysis of high-affinity assembly for AMPA receptor amino-terminal domains.

Zhao H, Berger AJ, Brown PH, Kumar J, Balbo A, May CA, Casillas E Jr, Laue TM, Patterson GH, Mayer ML, Schuck P.

J Gen Physiol. 2012 May;139(5):371-88. doi: 10.1085/jgp.201210770. Epub 2012 Apr 16. Erratum in: J Gen Physiol. 2013 Jun;141(6):747-9.

18.

Optical highlighter molecules in neurobiology.

Datta SR, Patterson GH.

Curr Opin Neurobiol. 2012 Feb;22(1):111-20. doi: 10.1016/j.conb.2011.11.007. Epub 2011 Nov 28. Review.

19.

A photoswitchable orange-to-far-red fluorescent protein, PSmOrange.

Subach OM, Patterson GH, Ting LM, Wang Y, Condeelis JS, Verkhusha VV.

Nat Methods. 2011 Jul 31;8(9):771-7. doi: 10.1038/nmeth.1664.

20.

Photoactivation and imaging of optical highlighter fluorescent proteins.

Patterson GH.

Curr Protoc Cytom. 2011 Jul;Chapter 12:Unit 12.23. doi: 10.1002/0471142956.cy1223s57.

21.

Highlights of the optical highlighter fluorescent proteins.

Patterson GH.

J Microsc. 2011 Jul;243(1):1-7. doi: 10.1111/j.1365-2818.2011.03505.x. Epub 2011 May 30. Review.

22.

Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells.

Subach FV, Patterson GH, Renz M, Lippincott-Schwartz J, Verkhusha VV.

J Am Chem Soc. 2010 May 12;132(18):6481-91. doi: 10.1021/ja100906g.

23.

Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging.

Lippincott-Schwartz J, Patterson GH.

Trends Cell Biol. 2009 Nov;19(11):555-65. doi: 10.1016/j.tcb.2009.09.003. Review.

24.

Fluorescence microscopy below the diffraction limit.

Patterson GH.

Semin Cell Dev Biol. 2009 Oct;20(8):886-93. doi: 10.1016/j.semcdb.2009.08.006. Epub 2009 Aug 19. Review.

25.

Photoactivatable mCherry for high-resolution two-color fluorescence microscopy.

Subach FV, Patterson GH, Manley S, Gillette JM, Lippincott-Schwartz J, Verkhusha VV.

Nat Methods. 2009 Feb;6(2):153-9. doi: 10.1038/nmeth.1298. Epub 2009 Jan 25. Erratum in: Nat Methods. 2009 Apr;6(4):311.

26.

Transport through the Golgi apparatus by rapid partitioning within a two-phase membrane system.

Patterson GH, Hirschberg K, Polishchuk RS, Gerlich D, Phair RD, Lippincott-Schwartz J.

Cell. 2008 Jun 13;133(6):1055-67. doi: 10.1016/j.cell.2008.04.044.

27.

Photoactivation and imaging of photoactivatable fluorescent proteins.

Patterson GH.

Curr Protoc Cell Biol. 2008 Mar;Chapter 21:Unit 21.6. doi: 10.1002/0471143030.cb2106s38. Review.

PMID:
18360816
28.

Fluorescent proteins for cell biology.

Patterson GH.

Methods Mol Biol. 2007;411:47-80. doi: 10.1007/978-1-59745-549-7_5.

PMID:
18287638
29.

High-density mapping of single-molecule trajectories with photoactivated localization microscopy.

Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF, Betzig E, Lippincott-Schwartz J.

Nat Methods. 2008 Feb;5(2):155-7. doi: 10.1038/nmeth.1176. Epub 2008 Jan 13.

PMID:
18193054
30.

Fluorescent proteins for photoactivation experiments.

Lippincott-Schwartz J, Patterson GH.

Methods Cell Biol. 2008;85:45-61.

PMID:
18155458
31.

Advances in fluorescent protein technology.

Shaner NC, Patterson GH, Davidson MW.

J Cell Sci. 2007 Dec 15;120(Pt 24):4247-60. Review. Erratum in: J Cell Sci. 2011 Jul 1;124(Pt 13):2321.

32.

Imaging intracellular fluorescent proteins at nanometer resolution.

Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF.

Science. 2006 Sep 15;313(5793):1642-5. Epub 2006 Aug 10.

33.

Probing nucleocytoplasmic transport by two-photon activation of PA-GFP.

Chen Y, MacDonald PJ, Skinner JP, Patterson GH, Müller JD.

Microsc Res Tech. 2006 Mar;69(3):220-6.

PMID:
16538629
34.

POLKADOTS are foci of functional interactions in T-Cell receptor-mediated signaling to NF-kappaB.

Rossman JS, Stoicheva NG, Langel FD, Patterson GH, Lippincott-Schwartz J, Schaefer BC.

Mol Biol Cell. 2006 May;17(5):2166-76. Epub 2006 Feb 22.

35.

A new harvest of fluorescent proteins.

Patterson GH.

Nat Biotechnol. 2004 Dec;22(12):1524-5. No abstract available.

PMID:
15583657
36.

Selective photolabeling of proteins using photoactivatable GFP.

Patterson GH, Lippincott-Schwartz J.

Methods. 2004 Apr;32(4):445-50.

PMID:
15003607
37.

Photobleaching and photoactivation: following protein dynamics in living cells.

Lippincott-Schwartz J, Altan-Bonnet N, Patterson GH.

Nat Cell Biol. 2003 Sep;Suppl:S7-14. Review.

PMID:
14562845
38.

Development and use of fluorescent protein markers in living cells.

Lippincott-Schwartz J, Patterson GH.

Science. 2003 Apr 4;300(5616):87-91. Review.

PMID:
12677058
39.

A photoactivatable GFP for selective photolabeling of proteins and cells.

Patterson GH, Lippincott-Schwartz J.

Science. 2002 Sep 13;297(5588):1873-7.

40.

Förster distances between green fluorescent protein pairs.

Patterson GH, Piston DW, Barisas BG.

Anal Biochem. 2000 Sep 10;284(2):438-40. No abstract available.

PMID:
10964438
41.

Separation of the glucose-stimulated cytoplasmic and mitochondrial NAD(P)H responses in pancreatic islet beta cells.

Patterson GH, Knobel SM, Arkhammar P, Thastrup O, Piston DW.

Proc Natl Acad Sci U S A. 2000 May 9;97(10):5203-7.

42.

Photobleaching in two-photon excitation microscopy.

Patterson GH, Piston DW.

Biophys J. 2000 Apr;78(4):2159-62.

43.

Two-color GFP expression system for C. elegans.

Miller DM 3rd, Desai NS, Hardin DC, Piston DW, Patterson GH, Fleenor J, Xu S, Fire A.

Biotechniques. 1999 May;26(5):914-8, 920-1.

44.

Quantitative imaging of the green fluorescent protein (GFP).

Piston DW, Patterson GH, Knobel SM.

Methods Cell Biol. 1999;58:31-48. Review. No abstract available.

PMID:
9891373
45.

Quantitative imaging of TATA-binding protein in living yeast cells.

Patterson GH, Schroeder SC, Bai Y, Weil A, Piston DW.

Yeast. 1998 Jun 30;14(9):813-25.

46.

Improved fluorescence and dual color detection with enhanced blue and green variants of the green fluorescent protein.

Yang TT, Sinai P, Green G, Kitts PA, Chen YT, Lybarger L, Chervenak R, Patterson GH, Piston DW, Kain SR.

J Biol Chem. 1998 Apr 3;273(14):8212-6.

47.

Dual-color flow cytometric detection of fluorescent proteins using single-laser (488-nm) excitation.

Lybarger L, Dempsey D, Patterson GH, Piston DW, Kain SR, Chervenak R.

Cytometry. 1998 Mar 1;31(3):147-52.

PMID:
9515713
48.

Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy.

Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW.

Biophys J. 1997 Nov;73(5):2782-90.

49.

DEPTH PERCEPTION IN SHEEP: EFFECTS OF INTERRUPTING THE MOTHER-NEONATE BOND.

LEMMON WB, PATTERSON GH.

Science. 1964 Aug 21;145(3634):835-6.

PMID:
14163332

Supplemental Content

Loading ...
Support Center