Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 21

1.

Homophilic CD44 Interactions Mediate Tumor Cell Aggregation and Polyclonal Metastasis in Patient-Derived Breast Cancer Models.

Liu X, Taftaf R, Kawaguchi M, Chang YF, Chen W, Entenberg D, Zhang Y, Gerratana L, Huang S, Patel DB, Tsui E, Adorno-Cruz V, Chirieleison SM, Cao Y, Harney AS, Patel S, Patsialou A, Shen Y, Avril S, Gilmore HL, Lathia JD, Abbott DW, Cristofanilli M, Condeelis JS, Liu H.

Cancer Discov. 2019 Jan;9(1):96-113. doi: 10.1158/2159-8290.CD-18-0065. Epub 2018 Oct 25.

PMID:
30361447
2.

Autocrine CSF1R signaling mediates switching between invasion and proliferation downstream of TGFβ in claudin-low breast tumor cells.

Patsialou A, Wang Y, Pignatelli J, Chen X, Entenberg D, Oktay M, Condeelis JS.

Oncogene. 2015 May 21;34(21):2721-31. doi: 10.1038/onc.2014.226. Epub 2014 Aug 4.

3.

Metastatic cells: moving onco-targets.

Patsialou A, Condeelis JS.

Oncotarget. 2014 Jun 15;5(11):3424-5. No abstract available.

4.

Macrophage contact induces RhoA GTPase signaling to trigger tumor cell intravasation.

Roh-Johnson M, Bravo-Cordero JJ, Patsialou A, Sharma VP, Guo P, Liu H, Hodgson L, Condeelis J.

Oncogene. 2014 Aug 14;33(33):4203-12. doi: 10.1038/onc.2013.377. Epub 2013 Sep 23.

5.

Dysregulation of PAD4-mediated citrullination of nuclear GSK3β activates TGF-β signaling and induces epithelial-to-mesenchymal transition in breast cancer cells.

Stadler SC, Vincent CT, Fedorov VD, Patsialou A, Cherrington BD, Wakshlag JJ, Mohanan S, Zee BM, Zhang X, Garcia BA, Condeelis JS, Brown AM, Coonrod SA, Allis CD.

Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11851-6. doi: 10.1073/pnas.1308362110. Epub 2013 Jul 1. Erratum in: Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16283.

6.

Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo cell migration in human breast tumors.

Patsialou A, Bravo-Cordero JJ, Wang Y, Entenberg D, Liu H, Clarke M, Condeelis JS.

Intravital. 2013 Apr 1;2(2):e25294.

7.

Imaging interactions between macrophages and tumour cells that are involved in metastasis in vivo and in vitro.

Dovas A, Patsialou A, Harney AS, Condeelis J, Cox D.

J Microsc. 2013 Sep;251(3):261-9. doi: 10.1111/j.1365-2818.2012.03667.x. Epub 2012 Nov 30. Review.

8.

Selective gene-expression profiling of migratory tumor cells in vivo predicts clinical outcome in breast cancer patients.

Patsialou A, Wang Y, Lin J, Whitney K, Goswami S, Kenny PA, Condeelis JS.

Breast Cancer Res. 2012 Oct 31;14(5):R139. doi: 10.1186/bcr3344.

9.

Arg/Abl2 promotes invasion and attenuates proliferation of breast cancer in vivo.

Gil-Henn H, Patsialou A, Wang Y, Warren MS, Condeelis JS, Koleske AJ.

Oncogene. 2013 May 23;32(21):2622-30. doi: 10.1038/onc.2012.284. Epub 2012 Jul 9.

10.

Reconstitution of in vivo macrophage-tumor cell pairing and streaming motility on one-dimensional micro-patterned substrates.

Sharma VP, Beaty BT, Patsialou A, Liu H, Clarke M, Cox D, Condeelis JS, Eddy RJ.

Intravital. 2012 Jul 1;1(1):77-85.

11.

Chemotaxis in cancer.

Roussos ET, Condeelis JS, Patsialou A.

Nat Rev Cancer. 2011 Jul 22;11(8):573-87. doi: 10.1038/nrc3078. Review.

12.

Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models.

Liu H, Patel MR, Prescher JA, Patsialou A, Qian D, Lin J, Wen S, Chang YF, Bachmann MH, Shimono Y, Dalerba P, Adorno M, Lobo N, Bueno J, Dirbas FM, Goswami S, Somlo G, Condeelis J, Contag CH, Gambhir SS, Clarke MF.

Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18115-20. doi: 10.1073/pnas.1006732107. Epub 2010 Oct 4.

13.

Invasion of human breast cancer cells in vivo requires both paracrine and autocrine loops involving the colony-stimulating factor-1 receptor.

Patsialou A, Wyckoff J, Wang Y, Goswami S, Stanley ER, Condeelis JS.

Cancer Res. 2009 Dec 15;69(24):9498-506. doi: 10.1158/0008-5472.CAN-09-1868.

14.

Differential enhancement of breast cancer cell motility and metastasis by helical and kinase domain mutations of class IA phosphoinositide 3-kinase.

Pang H, Flinn R, Patsialou A, Wyckoff J, Roussos ET, Wu H, Pozzuto M, Goswami S, Condeelis JS, Bresnick AR, Segall JE, Backer JM.

Cancer Res. 2009 Dec 1;69(23):8868-76. doi: 10.1158/0008-5472.CAN-09-1968. Epub 2009 Nov 10.

15.

Identification of invasion specific splice variants of the cytoskeletal protein Mena present in mammary tumor cells during invasion in vivo.

Goswami S, Philippar U, Sun D, Patsialou A, Avraham J, Wang W, Di Modugno F, Nistico P, Gertler FB, Condeelis JS.

Clin Exp Metastasis. 2009;26(2):153-9. doi: 10.1007/s10585-008-9225-8. Epub 2008 Nov 5.

16.

Distinct mammalian SWI/SNF chromatin remodeling complexes with opposing roles in cell-cycle control.

Nagl NG Jr, Wang X, Patsialou A, Van Scoy M, Moran E.

EMBO J. 2007 Feb 7;26(3):752-63. Epub 2007 Jan 25.

17.

The p270 (ARID1A/SMARCF1) subunit of mammalian SWI/SNF-related complexes is essential for normal cell cycle arrest.

Nagl NG Jr, Patsialou A, Haines DS, Dallas PB, Beck GR Jr, Moran E.

Cancer Res. 2005 Oct 15;65(20):9236-44.

18.

DNA-binding properties of ARID family proteins.

Patsialou A, Wilsker D, Moran E.

Nucleic Acids Res. 2005 Jan 7;33(1):66-80. Print 2005.

19.

A dynamic equilibrium between CDKs and PP2A modulates phosphorylation of pRB, p107 and p130.

Garriga J, Jayaraman AL, Limón A, Jayadeva G, Sotillo E, Truongcao M, Patsialou A, Wadzinski BE, Graña X.

Cell Cycle. 2004 Oct;3(10):1320-30. Epub 2004 Oct 15. Erratum in: Cell Cycle. 2005 Mar;4(3):e45.

PMID:
15467457
20.

The DNA-binding properties of the ARID-containing subunits of yeast and mammalian SWI/SNF complexes.

Wilsker D, Patsialou A, Zumbrun SD, Kim S, Chen Y, Dallas PB, Moran E.

Nucleic Acids Res. 2004 Feb 24;32(4):1345-53. Print 2004.

21.

ARID proteins: a diverse family of DNA binding proteins implicated in the control of cell growth, differentiation, and development.

Wilsker D, Patsialou A, Dallas PB, Moran E.

Cell Growth Differ. 2002 Mar;13(3):95-106. Review.

Supplemental Content

Loading ...
Support Center