Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 10

1.

A global resource allocation strategy governs growth transition kinetics of Escherichia coli.

Erickson DW, Schink SJ, Patsalo V, Williamson JR, Gerland U, Hwa T.

Nature. 2017 Nov 2;551(7678):119-123. doi: 10.1038/nature24299. Epub 2017 Oct 25.

2.

Reduction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth.

Dai X, Zhu M, Warren M, Balakrishnan R, Patsalo V, Okano H, Williamson JR, Fredrick K, Wang YP, Hwa T.

Nat Microbiol. 2016 Dec 12;2:16231. doi: 10.1038/nmicrobiol.2016.231.

3.

Rational modification of protein stability by targeting surface sites leads to complicated results.

Xiao S, Patsalo V, Shan B, Bi Y, Green DF, Raleigh DP.

Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11337-42. doi: 10.1073/pnas.1222245110. Epub 2013 Jun 24.

4.

Islet amyloid: from fundamental biophysics to mechanisms of cytotoxicity.

Cao P, Marek P, Noor H, Patsalo V, Tu LH, Wang H, Abedini A, Raleigh DP.

FEBS Lett. 2013 Apr 17;587(8):1106-18. doi: 10.1016/j.febslet.2013.01.046. Epub 2013 Feb 1. Review.

5.

Ionic strength effects on amyloid formation by amylin are a complicated interplay among Debye screening, ion selectivity, and Hofmeister effects.

Marek PJ, Patsalo V, Green DF, Raleigh DP.

Biochemistry. 2012 Oct 30;51(43):8478-90. doi: 10.1021/bi300574r. Epub 2012 Oct 16.

6.

Biophysical and functional analyses suggest that adenovirus E4-ORF3 protein requires higher-order multimerization to function against promyelocytic leukemia protein nuclear bodies.

Patsalo V, Yondola MA, Luan B, Shoshani I, Kisker C, Green DF, Raleigh DP, Hearing P.

J Biol Chem. 2012 Jun 29;287(27):22573-83. doi: 10.1074/jbc.M112.344234. Epub 2012 May 9.

7.

Sensitivity of amyloid formation by human islet amyloid polypeptide to mutations at residue 20.

Cao P, Tu LH, Abedini A, Levsh O, Akter R, Patsalo V, Schmidt AM, Raleigh DP.

J Mol Biol. 2012 Aug 10;421(2-3):282-95. doi: 10.1016/j.jmb.2011.12.032. Epub 2011 Dec 21.

8.

Rational and computational design of stabilized variants of cyanovirin-N that retain affinity and specificity for glycan ligands.

Patsalo V, Raleigh DP, Green DF.

Biochemistry. 2011 Dec 13;50(49):10698-712. doi: 10.1021/bi201411c. Epub 2011 Nov 16.

9.

Interpretation of p-cyanophenylalanine fluorescence in proteins in terms of solvent exposure and contribution of side-chain quenchers: a combined fluorescence, IR and molecular dynamics study.

Taskent-Sezgin H, Chung J, Patsalo V, Miyake-Stoner SJ, Miller AM, Brewer SH, Mehl RA, Green DF, Raleigh DP, Carrico I.

Biochemistry. 2009 Sep 29;48(38):9040-6. doi: 10.1021/bi900938z.

PMID:
19658436
10.

Computational models explain the oligosaccharide specificity of cyanovirin-N.

Fujimoto YK, Terbush RN, Patsalo V, Green DF.

Protein Sci. 2008 Nov;17(11):2008-14. doi: 10.1110/ps.034637.108. Epub 2008 Sep 22.

Supplemental Content

Loading ...
Support Center