Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 34

1.

The Road Ahead for the Development of Macrocyclic Peptide Ligands.

Passioura T.

Biochemistry. 2020 Jan 21;59(2):139-145. doi: 10.1021/acs.biochem.9b00802. Epub 2019 Oct 16.

PMID:
31592645
2.

Correction to "Display Selection of Exotic Macrocyclic Peptides Expressed Under a Radically Reprogrammed 23 Amino Acid Genetic Code".

Passioura T, Liu W, Dunkelmann D, Higuchi T, Suga H.

J Am Chem Soc. 2019 Jul 24;141(29):11727-11728. doi: 10.1021/jacs.9b06806. Epub 2019 Jul 9. No abstract available.

PMID:
31287675
3.

Macrocyclic peptide-based inhibition and imaging of hepatocyte growth factor.

Sakai K, Passioura T, Sato H, Ito K, Furuhashi H, Umitsu M, Takagi J, Kato Y, Mukai H, Warashina S, Zouda M, Watanabe Y, Yano S, Shibata M, Suga H, Matsumoto K.

Nat Chem Biol. 2019 Jun;15(6):598-606. doi: 10.1038/s41589-019-0285-7. Epub 2019 May 17.

PMID:
31101918
4.

De Novo Discovery of Nonstandard Macrocyclic Peptides as Noncompetitive Inhibitors of the Zika Virus NS2B-NS3 Protease.

Nitsche C, Passioura T, Varava P, Mahawaththa MC, Leuthold MM, Klein CD, Suga H, Otting G.

ACS Med Chem Lett. 2019 Jan 4;10(2):168-174. doi: 10.1021/acsmedchemlett.8b00535. eCollection 2019 Feb 14.

5.

Ribosomal Synthesis of Backbone-Cyclic Peptides Compatible with In Vitro Display.

Takatsuji R, Shinbara K, Katoh T, Goto Y, Passioura T, Yajima R, Komatsu Y, Suga H.

J Am Chem Soc. 2019 Feb 13;141(6):2279-2287. doi: 10.1021/jacs.8b05327. Epub 2019 Feb 1.

PMID:
30648857
6.

Corrigendum to "Structure-activity studies of a macrocyclic peptide inhibitor of histone lysine demethylase 4A" [Bioorg. Med. Chem. 26/6 (2018) 1225-1231].

Passioura T, Bhushan B, Tumber A, Kawamura A, Suga H.

Bioorg Med Chem. 2019 Feb 1;27(3):578. doi: 10.1016/j.bmc.2018.12.020. Epub 2018 Dec 26. No abstract available.

PMID:
30594451
7.

Structural Features and Binding Modes of Thioether-Cyclized Peptide Ligands.

Otero-Ramirez ME, Passioura T, Suga H.

Biomedicines. 2018 Dec 13;6(4). pii: E116. doi: 10.3390/biomedicines6040116. Review.

8.

Pyrrole-Mediated Peptide Cyclization Identified through Genetically Reprogrammed Peptide Synthesis.

Decoene KW, Vannecke W, Passioura T, Suga H, Madder A.

Biomedicines. 2018 Oct 30;6(4). pii: E99. doi: 10.3390/biomedicines6040099.

9.

Nonproteinogenic deep mutational scanning of linear and cyclic peptides.

Rogers JM, Passioura T, Suga H.

Proc Natl Acad Sci U S A. 2018 Oct 23;115(43):10959-10964. doi: 10.1073/pnas.1809901115. Epub 2018 Oct 9.

10.

Display Selection of Exotic Macrocyclic Peptides Expressed under a Radically Reprogrammed 23 Amino Acid Genetic Code.

Passioura T, Liu W, Dunkelmann D, Higuchi T, Suga H.

J Am Chem Soc. 2018 Sep 19;140(37):11551-11555. doi: 10.1021/jacs.8b03367. Epub 2018 Sep 4. Erratum in: J Am Chem Soc. 2019 Jul 9;:.

PMID:
30157372
11.

De Novo Macrocyclic Peptide Inhibitors of Hepatitis B Virus Cellular Entry.

Passioura T, Watashi K, Fukano K, Shimura S, Saso W, Morishita R, Ogasawara Y, Tanaka Y, Mizokami M, Sureau C, Suga H, Wakita T.

Cell Chem Biol. 2018 Jul 19;25(7):906-915.e5. doi: 10.1016/j.chembiol.2018.04.011. Epub 2018 May 17.

12.

Structure-activity studies of a macrocyclic peptide inhibitor of histone lysine demethylase 4A.

Passioura T, Bhushan B, Tumber A, Kawamura A, Suga H.

Bioorg Med Chem. 2018 Mar 15;26(6):1225-1231. doi: 10.1016/j.bmc.2018.01.013. Epub 2018 Jan 31. Erratum in: Bioorg Med Chem. 2019 Feb 1;27(3):578.

PMID:
29402611
13.

Identification of nonstandard macrocyclic peptide ligands through display screening.

Taylor RD, Rey-Carrizo M, Passioura T, Suga H.

Drug Discov Today Technol. 2017 Dec;26:17-23. doi: 10.1016/j.ddtec.2017.10.005. Epub 2017 Nov 15. Review.

PMID:
29249238
14.

Macrocyclic peptide inhibitors for the protein-protein interaction of Zaire Ebola virus protein 24 and karyopherin alpha 5.

Song X, Lu LY, Passioura T, Suga H.

Org Biomol Chem. 2017 Jun 21;15(24):5155-5160. doi: 10.1039/c7ob00012j.

PMID:
28574091
15.

Highly selective inhibition of histone demethylases by de novo macrocyclic peptides.

Kawamura A, Münzel M, Kojima T, Yapp C, Bhushan B, Goto Y, Tumber A, Katoh T, King ON, Passioura T, Walport LJ, Hatch SB, Madden S, Müller S, Brennan PE, Chowdhury R, Hopkinson RJ, Suga H, Schofield CJ.

Nat Commun. 2017 Apr 6;8:14773. doi: 10.1038/ncomms14773.

16.

A RaPID way to discover nonstandard macrocyclic peptide modulators of drug targets.

Passioura T, Suga H.

Chem Commun (Camb). 2017 Feb 7;53(12):1931-1940. doi: 10.1039/c6cc06951g. Review.

PMID:
28091672
17.

Reprogramming the genetic code in vitro.

Passioura T, Suga H.

Trends Biochem Sci. 2014 Sep;39(9):400-8. doi: 10.1016/j.tibs.2014.07.005. Epub 2014 Aug 13. Review.

PMID:
25129886
18.

Selection-based discovery of druglike macrocyclic peptides.

Passioura T, Katoh T, Goto Y, Suga H.

Annu Rev Biochem. 2014;83:727-52. doi: 10.1146/annurev-biochem-060713-035456. Epub 2014 Feb 21. Review.

PMID:
24580641
19.

Flexizyme-mediated genetic reprogramming as a tool for noncanonical peptide synthesis and drug discovery.

Passioura T, Suga H.

Chemistry. 2013 May 17;19(21):6530-6. doi: 10.1002/chem.201300247. Epub 2013 Mar 20.

PMID:
23519693
20.

Technologies for the synthesis of mRNA-encoding libraries and discovery of bioactive natural product-inspired non-traditional macrocyclic peptides.

Ito K, Passioura T, Suga H.

Molecules. 2013 Mar 18;18(3):3502-28. doi: 10.3390/molecules18033502. Review.

21.

Flexizymes, their evolutionary history and diverse utilities.

Passioura T, Suga H.

Top Curr Chem. 2014;344:331-45. doi: 10.1007/128_2013_421. Review.

PMID:
23478876
22.

Sequence determinants of innate immune activation by short interfering RNAs.

Goodchild A, Nopper N, King A, Doan T, Tanudji M, Arndt GM, Poidinger M, Rivory LP, Passioura T.

BMC Immunol. 2009 Jul 24;10:40. doi: 10.1186/1471-2172-10-40.

23.

Interfering ribonucleic acids that suppress expression of multiple unrelated genes.

Passioura T, Gozar MM, Goodchild A, King A, Arndt GM, Poidinger M, Birkett DJ, Rivory LP.

BMC Biotechnol. 2009 Jun 16;9:57. doi: 10.1186/1472-6750-9-57.

24.

Primary leukocyte screens for innate immune agonists.

Goodchild A, Nopper N, Craddock A, Law T, King A, Fanning G, Rivory L, Passioura T.

J Biomol Screen. 2009 Jul;14(6):723-30. doi: 10.1177/1087057109335325. Epub 2009 Jun 12.

PMID:
19525489
25.

Dz13, a DNAzyme targeting c-jun, induces off-target cytotoxicity in endothelial cells with features of nonapoptotic programmed cell death.

Gozar MM, Goodchild A, Passioura T, King A, Lai A, Witherington C, Rivory L.

Oligonucleotides. 2008 Sep;18(3):257-68. doi: 10.1089/oli.2008.0139.

PMID:
18699742
26.

Cytotoxic G-rich oligodeoxynucleotides: putative protein targets and required sequence motif.

Goodchild A, King A, Gozar MM, Passioura T, Tucker C, Rivory L.

Nucleic Acids Res. 2007;35(13):4562-72. Epub 2007 Jun 22.

28.

The role of IRF1 and IRF2 transcription factors in leukaemogenesis.

Choo A, Palladinetti P, Passioura T, Shen S, Lock R, Symonds G, Dolnikov A.

Curr Gene Ther. 2006 Oct;6(5):543-50. Review.

PMID:
17073600
29.

A retroviral library genetic screen identifies IRF-2 as an inhibitor of N-ras-induced growth suppression in leukemic cells.

Passioura T, Shen S, Symonds G, Dolnikov A.

Oncogene. 2005 Nov 10;24(49):7327-36.

PMID:
16007130
30.

N-ras-induced growth suppression of myeloid cells is mediated by IRF-1.

Passioura T, Dolnikov A, Shen S, Symonds G.

Cancer Res. 2005 Feb 1;65(3):797-804.

31.

Mutant N-ras preferentially drives human CD34+ hematopoietic progenitor cells into myeloid differentiation and proliferation both in vitro and in the NOD/SCID mouse.

Shen SW, Dolnikov A, Passioura T, Millington M, Wotherspoon S, Rice A, MacKenzie KL, Symonds G.

Exp Hematol. 2004 Sep;32(9):852-60.

PMID:
15345287
32.

Bone marrow reconstitution as a relevant model of genetically programmed leukemia.

Dolnikov A, Shen S, Passioura T, Symonds G.

Curr Med Chem Cardiovasc Hematol Agents. 2003 Jun;1(2):83-97. Review.

PMID:
15320691
33.

Cancer gene suppression strategies: issues and potential.

Passioura T, Symonds G.

Curr Issues Mol Biol. 2004 Jul;6(2):89-101. Review.

34.

A sensitive dual-fluorescence reporter system enables positive selection of ras suppressors by suppression of ras-induced apoptosis.

Dolnikov A, Shen S, Millington M, Passioura T, Pedler M, Rasko JE, Symonds G.

Cancer Gene Ther. 2003 Oct;10(10):745-54.

PMID:
14502227

Supplemental Content

Loading ...
Support Center