Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 132

1.

Transcriptional Signatures Modulating SAM Morphometric and Plant Architectural Traits Enhance Yield and Productivity in Chickpea.

Narnoliya L, Basu U, Bajaj D, Malik N, Thakro V, Daware A, Sharma A, Tripathi S, Hegde VS, Upadhyaya HD, Singh AK, Tyagi AK, Parida SK.

Plant J. 2019 Feb 13. doi: 10.1111/tpj.14284. [Epub ahead of print]

PMID:
30758092
2.

ABC transporter-mediated transport of glutathione conjugates enhances seed yield and quality in chickpea.

Basu U, Upadhyaya HD, Srivastava R, Daware A, Malik N, Sharma A, Bajaj D, Narnoliya L, Thakro V, Kujur A, Tripathi S, Bharadwaj C, Hegde VS, Pandey AK, Singh AK, Tyagi AK, Parida SK.

Plant Physiol. 2019 Feb 8. pii: pp.00934.2018. doi: 10.1104/pp.18.00934. [Epub ahead of print]

PMID:
30737266
3.

Salinity stress response and 'omics' approaches for improving salinity stress tolerance in major grain legumes.

Jha UC, Bohra A, Jha R, Parida SK.

Plant Cell Rep. 2019 Jan 12. doi: 10.1007/s00299-019-02374-5. [Epub ahead of print] Review.

PMID:
30637478
4.

Metabolite changes in blood predict the onset of tuberculosis.

Weiner J 3rd, Maertzdorf J, Sutherland JS, Duffy FJ, Thompson E, Suliman S, McEwen G, Thiel B, Parida SK, Zyla J, Hanekom WA, Mohney RP, Boom WH, Mayanja-Kizza H, Howe R, Dockrell HM, Ottenhoff THM, Scriba TJ, Zak DE, Walzl G, Kaufmann SHE; GC6-74 consortium.

Nat Commun. 2018 Dec 6;9(1):5208. doi: 10.1038/s41467-018-07635-7.

5.

Genome-wide generation and genotyping of informative SNPs to scan molecular signatures for seed yield in chickpea.

Basu U, Srivastava R, Bajaj D, Thakro V, Daware A, Malik N, Upadhyaya HD, Parida SK.

Sci Rep. 2018 Sep 5;8(1):13240. doi: 10.1038/s41598-018-29926-1.

6.

Genetic dissection of photosynthetic efficiency traits for enhancing seed yield in chickpea.

Basu U, Bajaj D, Sharma A, Malik N, Daware A, Narnoliya L, Thakro V, Upadhyaya HD, Kumar R, Tripathi S, Bharadwaj C, Tyagi AK, Parida SK.

Plant Cell Environ. 2019 Jan;42(1):158-173. doi: 10.1111/pce.13319. Epub 2018 Jul 30.

PMID:
29676051
7.

Four-gene Pan-African Blood Signature Predicts Progression to Tuberculosis.

Suliman S, Thompson E, Sutherland J, Weiner Rd J, Ota MOC, Shankar S, Penn-Nicholson A, Thiel B, Erasmus M, Maertzdorf J, Duffy FJ, Hill PC, Hughes EJ, Stanley K, Downing K, Fisher ML, Valvo J, Parida SK, van der Spuy G, Tromp G, Adetifa IMO, Donkor S, Howe R, Mayanja-Kizza H, Boom WH, Dockrell H, Ottenhoff THM, Hatherill M, Aderem A, Hanekom WA, Scriba TJ, Kaufmann SH, Zak DE, Walzl G; and the GC6-74 and ACS cohort study groups.

Am J Respir Crit Care Med. 2018 Apr 6. doi: 10.1164/rccm.201711-2340OC. [Epub ahead of print]

PMID:
29624071
8.

mQTL-seq and classical mapping implicates the role of an AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED (AHL) family gene in Ascochyta blight resistance of chickpea.

Kumar K, Purayannur S, Kaladhar VC, Parida SK, Verma PK.

Plant Cell Environ. 2018 Sep;41(9):2128-2140. doi: 10.1111/pce.13177. Epub 2018 May 16.

PMID:
29492990
9.

Population structure and association analysis of heat stress relevant traits in chickpea (Cicer arietinum L.).

Jha UC, Jha R, Bohra A, Parida SK, Kole PC, Thakro V, Singh D, Singh NP.

3 Biotech. 2018 Jan;8(1):43. doi: 10.1007/s13205-017-1057-2. Epub 2018 Jan 2.

10.

A study of salivary opiorphin levels using different anesthetic drugs and techniques - A randomized controlled clinical study.

Parida SK, Guruprasad T, Krishnakumar VB, Ravi RP.

J Stomatol Oral Maxillofac Surg. 2018 Jun;119(3):169-171. doi: 10.1016/j.jormas.2017.11.017. Epub 2017 Dec 13.

PMID:
29247820
11.

Identification of Purple Acid Phosphatases in Chickpea and Potential Roles of CaPAP7 in Seed Phytate Accumulation.

Bhadouria J, Singh AP, Mehra P, Verma L, Srivastawa R, Parida SK, Giri J.

Sci Rep. 2017 Sep 8;7(1):11012. doi: 10.1038/s41598-017-11490-9.

12.

A Multiple QTL-Seq Strategy Delineates Potential Genomic Loci Governing Flowering Time in Chickpea.

Srivastava R, Upadhyaya HD, Kumar R, Daware A, Basu U, Shimray PW, Tripathi S, Bharadwaj C, Tyagi AK, Parida SK.

Front Plant Sci. 2017 Jul 11;8:1105. doi: 10.3389/fpls.2017.01105. eCollection 2017.

13.

A repeat length variation in myo-inositol monophosphatase gene contributes to seed size trait in chickpea.

Dwivedi V, Parida SK, Chattopadhyay D.

Sci Rep. 2017 Jul 6;7(1):4764. doi: 10.1038/s41598-017-05332-x.

14.

Regional Association Analysis of MetaQTLs Delineates Candidate Grain Size Genes in Rice.

Daware AV, Srivastava R, Singh AK, Parida SK, Tyagi AK.

Front Plant Sci. 2017 May 29;8:807. doi: 10.3389/fpls.2017.00807. eCollection 2017.

15.

Genetic dissection of plant growth habit in chickpea.

Upadhyaya HD, Bajaj D, Srivastava R, Daware A, Basu U, Tripathi S, Bharadwaj C, Tyagi AK, Parida SK.

Funct Integr Genomics. 2017 Nov;17(6):711-723. doi: 10.1007/s10142-017-0566-8. Epub 2017 Jun 9.

PMID:
28600722
16.

Development of a potent invigorator of immune responses endowed with both preventive and therapeutic properties.

Talwar GP, Gupta JC, Mustafa AS, Kar HK, Katoch K, Parida SK, Reddi PP, Ahmed N, Saini V, Gupta S.

Biologics. 2017 May 2;11:55-63. doi: 10.2147/BTT.S128308. eCollection 2017. Review.

17.

bHLH142 regulates various metabolic pathway-related genes to affect pollen development and anther dehiscence in rice.

Ranjan R, Khurana R, Malik N, Badoni S, Parida SK, Kapoor S, Tyagi AK.

Sci Rep. 2017 Mar 6;7:43397. doi: 10.1038/srep43397.

18.

An Efficient Strategy Combining SSR Markers- and Advanced QTL-seq-driven QTL Mapping Unravels Candidate Genes Regulating Grain Weight in Rice.

Daware A, Das S, Srivastava R, Badoni S, Singh AK, Agarwal P, Parida SK, Tyagi AK.

Front Plant Sci. 2016 Oct 26;7:1535. eCollection 2016.

19.

Genome-wide development and deployment of informative intron-spanning and intron-length polymorphism markers for genomics-assisted breeding applications in chickpea.

Srivastava R, Bajaj D, Sayal YK, Meher PK, Upadhyaya HD, Kumar R, Tripathi S, Bharadwaj C, Rao AR, Parida SK.

Plant Sci. 2016 Nov;252:374-387. doi: 10.1016/j.plantsci.2016.08.013. Epub 2016 Aug 25.

PMID:
27717474
20.
21.

Transcriptome landscape of perennial wild Cicer microphyllum uncovers functionally relevant molecular tags regulating agronomic traits in chickpea.

Srivastava R, Bajaj D, Malik A, Singh M, Parida SK.

Sci Rep. 2016 Sep 29;6:33616. doi: 10.1038/srep33616.

22.

Identification of candidate genes and natural allelic variants for QTLs governing plant height in chickpea.

Kujur A, Upadhyaya HD, Bajaj D, Gowda CL, Sharma S, Tyagi AK, Parida SK.

Sci Rep. 2016 Jun 20;6:27968. doi: 10.1038/srep27968.

23.

Single nucleotide polymorphism in sugar pathway and disease resistance genes in sugarcane.

Parida SK, Kalia S, Pandit A, Nayak P, Singh RK, Gaikwad K, Srivastava PS, Singh NK, Mohapatra T.

Plant Cell Rep. 2016 Aug;35(8):1629-53. doi: 10.1007/s00299-016-1978-y. Epub 2016 Jun 11.

PMID:
27289592
24.

EcoTILLING-Based Association Mapping Efficiently Delineates Functionally Relevant Natural Allelic Variants of Candidate Genes Governing Agronomic Traits in Chickpea.

Bajaj D, Srivastava R, Nath M, Tripathi S, Bharadwaj C, Upadhyaya HD, Tyagi AK, Parida SK.

Front Plant Sci. 2016 Apr 19;7:450. doi: 10.3389/fpls.2016.00450. eCollection 2016.

25.

Genetic dissection of seed-iron and zinc concentrations in chickpea.

Upadhyaya HD, Bajaj D, Das S, Kumar V, Gowda CL, Sharma S, Tyagi AK, Parida SK.

Sci Rep. 2016 Apr 11;6:24050. doi: 10.1038/srep24050.

26.

Genome-Wide Scans for Delineation of Candidate Genes Regulating Seed-Protein Content in Chickpea.

Upadhyaya HD, Bajaj D, Narnoliya L, Das S, Kumar V, Gowda CL, Sharma S, Tyagi AK, Parida SK.

Front Plant Sci. 2016 Mar 23;7:302. doi: 10.3389/fpls.2016.00302. eCollection 2016.

27.

Genome-wide generation and use of informative intron-spanning and intron-length polymorphism markers for high-throughput genetic analysis in rice.

Badoni S, Das S, Sayal YK, Gopalakrishnan S, Singh AK, Rao AR, Agarwal P, Parida SK, Tyagi AK.

Sci Rep. 2016 Apr 1;6:23765. doi: 10.1038/srep23765.

28.

A blood RNA signature for tuberculosis disease risk: a prospective cohort study.

Zak DE, Penn-Nicholson A, Scriba TJ, Thompson E, Suliman S, Amon LM, Mahomed H, Erasmus M, Whatney W, Hussey GD, Abrahams D, Kafaar F, Hawkridge T, Verver S, Hughes EJ, Ota M, Sutherland J, Howe R, Dockrell HM, Boom WH, Thiel B, Ottenhoff THM, Mayanja-Kizza H, Crampin AC, Downing K, Hatherill M, Valvo J, Shankar S, Parida SK, Kaufmann SHE, Walzl G, Aderem A, Hanekom WA; ACS and GC6-74 cohort study groups.

Lancet. 2016 Jun 4;387(10035):2312-2322. doi: 10.1016/S0140-6736(15)01316-1. Epub 2016 Mar 24.

29.

An Integrated Genomic Strategy Delineates Candidate Mediator Genes Regulating Grain Size and Weight in Rice.

Malik N, Dwivedi N, Singh AK, Parida SK, Agarwal P, Thakur JK, Tyagi AK.

Sci Rep. 2016 Mar 22;6:23253. doi: 10.1038/srep23253.

30.

Identification of candidate genes for dissecting complex branch number trait in chickpea.

Bajaj D, Upadhyaya HD, Das S, Kumar V, Gowda CL, Sharma S, Tyagi AK, Parida SK.

Plant Sci. 2016 Apr;245:61-70. doi: 10.1016/j.plantsci.2016.01.004. Epub 2016 Jan 19.

PMID:
26940492
31.

Rice Improvement Through Genome-Based Functional Analysis and Molecular Breeding in India.

Agarwal P, Parida SK, Raghuvanshi S, Kapoor S, Khurana P, Khurana JP, Tyagi AK.

Rice (N Y). 2016 Dec;9(1):1. doi: 10.1186/s12284-015-0073-2. Epub 2016 Jan 7.

32.

mQTL-seq delineates functionally relevant candidate gene harbouring a major QTL regulating pod number in chickpea.

Das S, Singh M, Srivastava R, Bajaj D, Saxena MS, Rana JC, Bansal KC, Tyagi AK, Parida SK.

DNA Res. 2016 Feb;23(1):53-65. doi: 10.1093/dnares/dsv036. Epub 2015 Dec 19.

33.

A Genome-wide Combinatorial Strategy Dissects Complex Genetic Architecture of Seed Coat Color in Chickpea.

Bajaj D, Das S, Upadhyaya HD, Ranjan R, Badoni S, Kumar V, Tripathi S, Gowda CL, Sharma S, Singh S, Tyagi AK, Parida SK.

Front Plant Sci. 2015 Nov 17;6:979. doi: 10.3389/fpls.2015.00979. eCollection 2015.

34.

JAZ Repressors: Potential Involvement in Nutrients Deficiency Response in Rice and Chickpea.

Singh AP, Pandey BK, Deveshwar P, Narnoliya L, Parida SK, Giri J.

Front Plant Sci. 2015 Nov 10;6:975. doi: 10.3389/fpls.2015.00975. eCollection 2015.

35.

T-Cell Therapy: Options for Infectious Diseases.

Parida SK, Poiret T, Zhenjiang L, Meng Q, Heyckendorf J, Lange C, Ambati AS, Rao MV, Valentini D, Ferrara G, Rangelova E, Dodoo E, Zumla A, Maeurer M.

Clin Infect Dis. 2015 Oct 15;61Suppl 3:S217-24. doi: 10.1093/cid/civ615. Review.

36.

A genome-scale integrated approach aids in genetic dissection of complex flowering time trait in chickpea.

Upadhyaya HD, Bajaj D, Das S, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CL, Sharma S, Tyagi AK, Parida SK.

Plant Mol Biol. 2015 Nov;89(4-5):403-20. doi: 10.1007/s11103-015-0377-z. Epub 2015 Sep 22.

PMID:
26394865
37.

Genome-wide insertion-deletion (InDel) marker discovery and genotyping for genomics-assisted breeding applications in chickpea.

Das S, Upadhyaya HD, Srivastava R, Bajaj D, Gowda CL, Sharma S, Singh S, Tyagi AK, Parida SK.

DNA Res. 2015 Oct;22(5):377-86. doi: 10.1093/dnares/dsv020. Epub 2015 Sep 17.

38.

Development of genome-wide informative simple sequence repeat markers for large-scale genotyping applications in chickpea and development of web resource.

Parida SK, Verma M, Yadav SK, Ambawat S, Das S, Garg R, Jain M.

Front Plant Sci. 2015 Aug 21;6:645. doi: 10.3389/fpls.2015.00645. eCollection 2015.

40.

An advanced draft genome assembly of a desi type chickpea (Cicer arietinum L.).

Parween S, Nawaz K, Roy R, Pole AK, Venkata Suresh B, Misra G, Jain M, Yadav G, Parida SK, Tyagi AK, Bhatia S, Chattopadhyay D.

Sci Rep. 2015 Aug 11;5:12806. doi: 10.1038/srep12806.

41.

Genome-wide high-throughput SNP discovery and genotyping for understanding natural (functional) allelic diversity and domestication patterns in wild chickpea.

Bajaj D, Das S, Badoni S, Kumar V, Singh M, Bansal KC, Tyagi AK, Parida SK.

Sci Rep. 2015 Jul 24;5:12468. doi: 10.1038/srep12468.

42.

Bioavailability study of calcium sandoz-250 by atomic absorption spectroscopy in albino rats.

Patel BN, Krishnaveni N, Jivani NP, Khodakiya AS, Khodakiya MS, Parida SK.

Ayu. 2014 Oct-Dec;35(4):438-41. doi: 10.4103/0974-8520.159020.

43.

A genome-wide SNP scan accelerates trait-regulatory genomic loci identification in chickpea.

Kujur A, Bajaj D, Upadhyaya HD, Das S, Ranjan R, Shree T, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CL, Sharma S, Singh S, Tyagi AK, Parida SK.

Sci Rep. 2015 Jun 10;5:11166. doi: 10.1038/srep11166.

44.

Development and Integration of Genome-Wide Polymorphic Microsatellite Markers onto a Reference Linkage Map for Constructing a High-Density Genetic Map of Chickpea.

Khajuria YP, Saxena MS, Gaur R, Chattopadhyay D, Jain M, Parida SK, Bhatia S.

PLoS One. 2015 May 14;10(5):e0125583. doi: 10.1371/journal.pone.0125583. eCollection 2015.

45.

Ultra-high density intra-specific genetic linkage maps accelerate identification of functionally relevant molecular tags governing important agronomic traits in chickpea.

Kujur A, Upadhyaya HD, Shree T, Bajaj D, Das S, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CL, Sharma S, Singh S, Tyagi AK, Parida SK.

Sci Rep. 2015 May 5;5:9468. doi: 10.1038/srep09468.

46.

Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea.

Das S, Upadhyaya HD, Bajaj D, Kujur A, Badoni S, Laxmi, Kumar V, Tripathi S, Gowda CL, Sharma S, Singh S, Tyagi AK, Parida SK.

DNA Res. 2015 Jun;22(3):193-203. doi: 10.1093/dnares/dsv004. Epub 2015 Apr 27.

47.

Employing genome-wide SNP discovery and genotyping strategy to extrapolate the natural allelic diversity and domestication patterns in chickpea.

Kujur A, Bajaj D, Upadhyaya HD, Das S, Ranjan R, Shree T, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CL, Sharma S, Singh S, Tyagi AK, Parida SK.

Front Plant Sci. 2015 Mar 31;6:162. doi: 10.3389/fpls.2015.00162. eCollection 2015.

48.

Cellular therapy in tuberculosis.

Parida SK, Madansein R, Singh N, Padayatchi N, Master I, Naidu K, Zumla A, Maeurer M.

Int J Infect Dis. 2015 Mar;32:32-8. doi: 10.1016/j.ijid.2015.01.016. Review.

49.

A combinatorial approach of comprehensive QTL-based comparative genome mapping and transcript profiling identified a seed weight-regulating candidate gene in chickpea.

Bajaj D, Upadhyaya HD, Khan Y, Das S, Badoni S, Shree T, Kumar V, Tripathi S, Gowda CL, Singh S, Sharma S, Tyagi AK, Chattopdhyay D, Parida SK.

Sci Rep. 2015 Mar 19;5:9264. doi: 10.1038/srep09264.

50.

Genome-wide association mapping of salinity tolerance in rice (Oryza sativa).

Kumar V, Singh A, Mithra SV, Krishnamurthy SL, Parida SK, Jain S, Tiwari KK, Kumar P, Rao AR, Sharma SK, Khurana JP, Singh NK, Mohapatra T.

DNA Res. 2015 Apr;22(2):133-45. doi: 10.1093/dnares/dsu046. Epub 2015 Jan 27.

Supplemental Content

Loading ...
Support Center