Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 88

1.

Induction of a Specific Humoral Immune Response by Nasal Delivery of Bcla2ctd of Clostridioides difficile.

Maia AR, Reyes-Ramírez R, Pizarro-Guajardo M, Saggese A, Castro-Córdova P, Isticato R, Ricca E, Paredes-Sabja D, Baccigalupi L.

Int J Mol Sci. 2020 Feb 14;21(4). pii: E1277. doi: 10.3390/ijms21041277.

2.

Effect of antibiotic to induce Clostridioides difficile-susceptibility and infectious strain in a mouse model of Clostridioides difficile infection and recurrence.

Castro-Córdova P, Díaz-Yáñez F, Muñoz-Miralles J, Gil F, Paredes-Sabja D.

Anaerobe. 2020 Jan 12;62:102149. doi: 10.1016/j.anaerobe.2020.102149. [Epub ahead of print]

PMID:
31940467
3.

Sporulation and Germination in Clostridial Pathogens.

Shen A, Edwards AN, Sarker MR, Paredes-Sabja D.

Microbiol Spectr. 2019 Nov;7(6). doi: 10.1128/microbiolspec.GPP3-0017-2018. Review.

4.

cfr(B), cfr(C), and a New cfr-Like Gene, cfr(E), in Clostridium difficile Strains Recovered across Latin America.

Stojković V, Ulate MF, Hidalgo-Villeda F, Aguilar E, Monge-Cascante C, Pizarro-Guajardo M, Tsai K, Tzoc E, Camorlinga M, Paredes-Sabja D, Quesada-Gómez C, Fujimori DG, Rodríguez C.

Antimicrob Agents Chemother. 2019 Dec 20;64(1). pii: e01074-19. doi: 10.1128/AAC.01074-19. Print 2019 Dec 20.

PMID:
31685464
5.

New insights for vaccine development against Clostridium difficile infections.

Pizarro-Guajardo M, Chamorro-Veloso N, Vidal RM, Paredes-Sabja D.

Anaerobe. 2019 Aug;58:73-79. doi: 10.1016/j.anaerobe.2019.04.009. Epub 2019 Apr 26. Review.

PMID:
31034928
6.

Clostridium difficile toxins induce VEGF-A and vascular permeability to promote disease pathogenesis.

Huang J, Kelly CP, Bakirtzi K, Villafuerte Gálvez JA, Lyras D, Mileto SJ, Larcombe S, Xu H, Yang X, Shields KS, Zhu W, Zhang Y, Goldsmith JD, Patel IJ, Hansen J, Huang M, Yla-Herttuala S, Moss AC, Paredes-Sabja D, Pothoulakis C, Shah YM, Wang J, Chen X.

Nat Microbiol. 2019 Feb;4(2):269-279. doi: 10.1038/s41564-018-0300-x. Epub 2018 Dec 3.

7.

Identification of Escherichia coli strains for the heterologous overexpression of soluble Clostridium difficile exosporium proteins.

Brito-Silva C, Pizarro-Cerda J, Gil F, Paredes-Sabja D.

J Microbiol Methods. 2018 Nov;154:46-51. doi: 10.1016/j.mimet.2018.10.002. Epub 2018 Oct 4.

PMID:
30291882
8.

Indomethacin increases severity of Clostridium difficile infection in mouse model.

Muñoz-Miralles J, Trindade BC, Castro-Córdova P, Bergin IL, Kirk LA, Gil F, Aronoff DM, Paredes-Sabja D.

Future Microbiol. 2018 Sep;13:1271-1281. doi: 10.2217/fmb-2017-0311. Epub 2018 Sep 21.

9.

Clostridium difficile exosporium cysteine-rich proteins are essential for the morphogenesis of the exosporium layer, spore resistance, and affect C. difficile pathogenesis.

Calderón-Romero P, Castro-Córdova P, Reyes-Ramírez R, Milano-Céspedes M, Guerrero-Araya E, Pizarro-Guajardo M, Olguín-Araneda V, Gil F, Paredes-Sabja D.

PLoS Pathog. 2018 Aug 8;14(8):e1007199. doi: 10.1371/journal.ppat.1007199. eCollection 2018 Aug.

10.

Effect of antibiotic treatment on the formation of non-spore Clostridium difficile persister-like cells.

Álvarez R, Inostroza O, Garavaglia M, Minton NP, Paredes-Sabja D, Gil F.

J Antimicrob Chemother. 2018 Sep 1;73(9):2396-2399. doi: 10.1093/jac/dky186.

PMID:
29757406
11.

Subtyping of Clostridium difficile PCR ribotypes 591, 106 and 002, the dominant strain types circulating in Medellin, Colombia.

Salazar CL, Reyes C, Cienfuegos-Gallet AV, Best E, Atehortua S, Sierra P, Correa MM, Fawley WN, Paredes-Sabja D, Wilcox M, Gonzalez A.

PLoS One. 2018 Apr 12;13(4):e0195694. doi: 10.1371/journal.pone.0195694. eCollection 2018.

12.

Identification of Clostridium difficile Immunoreactive Spore Proteins of the Epidemic Strain R20291.

Pizarro-Guajardo M, Ravanal MC, Paez MD, Callegari E, Paredes-Sabja D.

Proteomics Clin Appl. 2018 Sep;12(5):e1700182. doi: 10.1002/prca.201700182. Epub 2018 Apr 18.

13.

Clostridioides (Clostridium) difficile infection: current and alternative therapeutic strategies.

Gil F, Calderón IL, Fuentes JA, Paredes-Sabja D.

Future Microbiol. 2018 Mar;13:469-482. doi: 10.2217/fmb-2017-0203. Epub 2018 Feb 21. Review.

PMID:
29464969
14.

Lauric Acid Is an Inhibitor of Clostridium difficile Growth in Vitro and Reduces Inflammation in a Mouse Infection Model.

Yang HT, Chen JW, Rathod J, Jiang YZ, Tsai PJ, Hung YP, Ko WC, Paredes-Sabja D, Huang IH.

Front Microbiol. 2018 Jan 17;8:2635. doi: 10.3389/fmicb.2017.02635. eCollection 2017.

15.

Inactivation model and risk-analysis design for apple juice processing by high-pressure CO2.

Deng K, Serment-Moreno V, Welti-Chanes J, Paredes-Sabja D, Fuentes C, Wu X, Torres JA.

J Food Sci Technol. 2018 Jan;55(1):258-264. doi: 10.1007/s13197-017-2933-9. Epub 2017 Nov 16.

16.

Effect of microalgae on intestinal inflammation triggered by soybean meal and bacterial infection in zebrafish.

Bravo-Tello K, Ehrenfeld N, Solís CJ, Ulloa PE, Hedrera M, Pizarro-Guajardo M, Paredes-Sabja D, Feijóo CG.

PLoS One. 2017 Nov 8;12(11):e0187696. doi: 10.1371/journal.pone.0187696. eCollection 2017.

17.

Molecular, microbiological and clinical characterization of Clostridium difficile isolates from tertiary care hospitals in Colombia.

Salazar CL, Reyes C, Atehortua S, Sierra P, Correa MM, Paredes-Sabja D, Best E, Fawley WN, Wilcox M, González Á.

PLoS One. 2017 Sep 13;12(9):e0184689. doi: 10.1371/journal.pone.0184689. eCollection 2017.

18.

Characterization of Chicken IgY Specific to Clostridium difficile R20291 Spores and the Effect of Oral Administration in Mouse Models of Initiation and Recurrent Disease.

Pizarro-Guajardo M, Díaz-González F, Álvarez-Lobos M, Paredes-Sabja D.

Front Cell Infect Microbiol. 2017 Aug 14;7:365. doi: 10.3389/fcimb.2017.00365. eCollection 2017.

19.

Survival of Clostridium difficile spores at low water activity.

Deng K, Talukdar PK, Sarker MR, Paredes-Sabja D, Torres JA.

Food Microbiol. 2017 Aug;65:274-278. doi: 10.1016/j.fm.2017.03.013. Epub 2017 Mar 20.

PMID:
28400013
20.

Updates on Clostridium difficile spore biology.

Gil F, Lagos-Moraga S, Calderón-Romero P, Pizarro-Guajardo M, Paredes-Sabja D.

Anaerobe. 2017 Jun;45:3-9. doi: 10.1016/j.anaerobe.2017.02.018. Epub 2017 Feb 22. Review.

PMID:
28254263
21.

Genome Sequence of Clostridium paraputrificum 373-A1 Isolated in Chile from a Patient Infected with Clostridium difficile.

Guerrero-Araya E, Plaza-Garrido A, Díaz-Yañez F, Pizaro-Guajardo M, Valenzuela SL, Meneses C, Gil F, Castro-Nallar E, Paredes-Sabja D.

Genome Announc. 2016 Nov 3;4(6). pii: e01178-16. doi: 10.1128/genomeA.01178-16.

22.

Lose to win: marT pseudogenization in Salmonella enterica serovar Typhi contributed to the surV-dependent survival to H2O2, and inside human macrophage-like cells.

Ortega AP, Villagra NA, Urrutia IM, Valenzuela LM, Talamilla-Espinoza A, Hidalgo AA, Rodas PI, Gil F, Calderón IL, Paredes-Sabja D, Mora GC, Fuentes JA.

Infect Genet Evol. 2016 Nov;45:111-121. doi: 10.1016/j.meegid.2016.08.029. Epub 2016 Aug 24.

PMID:
27567490
23.

Characterization of the Adherence of Clostridium difficile Spores: The Integrity of the Outermost Layer Affects Adherence Properties of Spores of the Epidemic Strain R20291 to Components of the Intestinal Mucosa.

Mora-Uribe P, Miranda-Cárdenas C, Castro-Córdova P, Gil F, Calderón I, Fuentes JA, Rodas PI, Banawas S, Sarker MR, Paredes-Sabja D.

Front Cell Infect Microbiol. 2016 Sep 22;6:99. eCollection 2016.

24.

Characterization of germinants and their receptors for spores of non-food-borne Clostridium perfringens strain F4969.

Banawas S, Paredes-Sabja D, Setlow P, Sarker MR.

Microbiology. 2016 Nov;162(11):1972-1983. doi: 10.1099/mic.0.000378. Epub 2016 Sep 29.

PMID:
27692042
25.

A feed-forward loop between SroC and MgrR small RNAs modulates the expression of eptB and the susceptibility to polymyxin B in Salmonella Typhimurium.

Acuña LG, Barros MJ, Peñaloza D, Rodas PI, Paredes-Sabja D, Fuentes JA, Gil F, Calderón IL.

Microbiology. 2016 Nov;162(11):1996-2004. doi: 10.1099/mic.0.000365. Epub 2016 Aug 26.

PMID:
27571709
26.

Acyldepsipeptide antibiotics as a potential therapeutic agent against Clostridium difficile recurrent infections.

Gil F, Paredes-Sabja D.

Future Microbiol. 2016 Sep;11:1179-89. doi: 10.2217/fmb-2016-0064. Epub 2016 Aug 22. Review.

PMID:
27546386
27.

Salmonella Typhimurium exhibits fluoroquinolone resistance mediated by the accumulation of the antioxidant molecule H2S in a CysK-dependent manner.

Frávega J, Álvarez R, Díaz F, Inostroza O, Tejías C, Rodas PI, Paredes-Sabja D, Fuentes JA, Calderón IL, Gil F.

J Antimicrob Chemother. 2016 Dec;71(12):3409-3415. Epub 2016 Aug 15.

PMID:
27530757
28.

Ultrastructure Variability of the Exosporium Layer of Clostridium difficile Spores from Sporulating Cultures and Biofilms.

Pizarro-Guajardo M, Calderón-Romero P, Paredes-Sabja D.

Appl Environ Microbiol. 2016 Sep 16;82(19):5892-8. doi: 10.1128/AEM.01463-16. Print 2016 Oct 1.

29.

The NarE protein of Neisseria gonorrhoeae catalyzes ADP-ribosylation of several ADP-ribose acceptors despite an N-terminal deletion.

Rodas PI, Álamos-Musre AS, Álvarez FP, Escobar A, Tapia CV, Osorio E, Otero C, Calderón IL, Fuentes JA, Gil F, Paredes-Sabja D, Christodoulides M.

FEMS Microbiol Lett. 2016 Sep;363(17). pii: fnw181. doi: 10.1093/femsle/fnw181. Epub 2016 Jul 26.

30.

Clostridium perfringens Sporulation and Sporulation-Associated Toxin Production.

Li J, Paredes-Sabja D, Sarker MR, McClane BA.

Microbiol Spectr. 2016 Jun;4(3). doi: 10.1128/microbiolspec.TBS-0022-2015. Review.

31.

Ultrastructural Variability of the Exosporium Layer of Clostridium difficile Spores.

Pizarro-Guajardo M, Calderón-Romero P, Castro-Córdova P, Mora-Uribe P, Paredes-Sabja D.

Appl Environ Microbiol. 2016 Feb 5;82(7):2202-2209. doi: 10.1128/AEM.03410-15.

32.

Predominance of Clostridium difficile ribotypes 012, 027 and 046 in a university hospital in Chile, 2012.

Plaza-Garrido Á, Barra-Carrasco J, Macias JH, Carman R, Fawley WN, Wilcox MH, Hernández-Rocha C, Guzmán-Durán AM, Alvarez-Lobos M, Paredes-Sabja D.

Epidemiol Infect. 2016 Apr;144(5):976-9. doi: 10.1017/S0950268815002459. Epub 2015 Oct 22.

PMID:
26489717
33.

Clostridium difficile recurrent infection: possible implication of TA systems.

Gil F, Pizarro-Guajardo M, Álvarez R, Garavaglia M, Paredes-Sabja D.

Future Microbiol. 2015;10(10):1649-57. doi: 10.2217/fmb.15.94. Epub 2015 Oct 6. Review.

PMID:
26439907
34.

Outcome of relapsing Clostridium difficile infections do not correlate with virulence-, spore- and vegetative cell-associated phenotypes.

Plaza-Garrido Á, Miranda-Cárdenas C, Castro-Córdova P, Olguín-Araneda V, Cofré-Araneda G, Hernández-Rocha C, Carman R, Ibáñez P, Fawley WN, Wilcox MH, Gil F, Calderón IL, Fuentes JA, Guzmán-Durán AM, Alvarez-Lobos M, Paredes-Sabja D.

Anaerobe. 2015 Dec;36:30-8. doi: 10.1016/j.anaerobe.2015.09.005. Epub 2015 Sep 25.

PMID:
26403333
35.

Motility modulation by the small non-coding RNA SroC in Salmonella Typhimurium.

Fuentes DN, Calderón PF, Acuña LG, Rodas PI, Paredes-Sabja D, Fuentes JA, Gil F, Calderón IL.

FEMS Microbiol Lett. 2015 Sep;362(17):fnv135. doi: 10.1093/femsle/fnv135. Epub 2015 Aug 19.

PMID:
26293911
36.

Analysis of Vibrio vulnificus Infection Risk When Consuming Depurated Raw Oysters.

Deng K, Wu X, Fuentes C, Su YC, Welti-Chanes J, Paredes-Sabja D, Torres JA.

J Food Prot. 2015 Jun;78(6):1113-8. doi: 10.4315/0362-028X.JFP-14-421.

PMID:
26038900
37.

Location and stoichiometry of the protease CspB and the cortex-lytic enzyme SleC in Clostridium perfringens spores.

Banawas S, Korza G, Paredes-Sabja D, Li Y, Hao B, Setlow P, Sarker MR.

Food Microbiol. 2015 Sep;50:83-7. doi: 10.1016/j.fm.2015.04.001. Epub 2015 Apr 8.

PMID:
25998819
38.

Pseudogenization of sopA and sopE2 is functionally linked and contributes to virulence of Salmonella enterica serovar Typhi.

Valenzuela LM, Hidalgo AA, Rodríguez L, Urrutia IM, Ortega AP, Villagra NA, Paredes-Sabja D, Calderón IL, Gil F, Saavedra CP, Mora GC, Fuentes JA.

Infect Genet Evol. 2015 Jul;33:131-42. doi: 10.1016/j.meegid.2015.04.021. Epub 2015 Apr 23.

PMID:
25913156
39.

Protein composition of the outermost exosporium-like layer of Clostridium difficile 630 spores.

Díaz-González F, Milano M, Olguin-Araneda V, Pizarro-Cerda J, Castro-Córdova P, Tzeng SC, Maier CS, Sarker MR, Paredes-Sabja D.

J Proteomics. 2015 Jun 18;123:1-13. doi: 10.1016/j.jprot.2015.03.035. Epub 2015 Apr 4.

40.

The inhibitory effects of sorbate and benzoate against Clostridium perfringens type A isolates.

Alnoman M, Udompijitkul P, Paredes-Sabja D, Sarker MR.

Food Microbiol. 2015 Jun;48:89-98. doi: 10.1016/j.fm.2014.12.007. Epub 2014 Dec 24.

PMID:
25790996
41.

[Clostridium difficile spores and its relevance in the persistence and transmission of the infection].

Barra-Carrasco J, Hernández-Rocha C, Ibáñez P, Guzmán-Durán AM, Álvarez-Lobos M, Paredes-Sabja D.

Rev Chilena Infectol. 2014 Dec;31(6):694-703. doi: 10.4067/S0716-10182014000600010. Review. Spanish.

42.

[Performance of prognostic index in severe Clostridium difficile-associated infection: retrospective analysis in a university hospital].

Hernández-Rocha C, Tejos Sufan R, Plaza-Garrido Á, Barra-Carrasco J, Agüero Luengo C, Inostroza Levy G, Ibáñez Lazo P, Guzmán-Durán AM, Paredes-Sabja D, Molina Pezoa ME, Álvarez-Lobos M.

Rev Chilena Infectol. 2014 Dec;31(6):659-65. doi: 10.4067/S0716-10182014000600003. Spanish.

43.

CysB-dependent upregulation of the Salmonella Typhimurium cysJIH operon in response to antimicrobial compounds that induce oxidative stress.

Álvarez R, Neumann G, Frávega J, Díaz F, Tejías C, Collao B, Fuentes JA, Paredes-Sabja D, Calderón IL, Gil F.

Biochem Biophys Res Commun. 2015 Feb 27;458(1):46-51. doi: 10.1016/j.bbrc.2015.01.058. Epub 2015 Jan 28.

PMID:
25637663
44.

Updates on the sporulation process in Clostridium species.

Talukdar PK, Olguín-Araneda V, Alnoman M, Paredes-Sabja D, Sarker MR.

Res Microbiol. 2015 May;166(4):225-35. doi: 10.1016/j.resmic.2014.12.001. Epub 2014 Dec 23. Review.

PMID:
25541348
45.

Survival of Clostridium difficile spores at low temperatures.

Deng K, Plaza-Garrido A, Torres JA, Paredes-Sabja D.

Food Microbiol. 2015 Apr;46:218-221. doi: 10.1016/j.fm.2014.07.022. Epub 2014 Aug 23.

PMID:
25475288
46.

Recent advances in germination of Clostridium spores.

Olguín-Araneda V, Banawas S, Sarker MR, Paredes-Sabja D.

Res Microbiol. 2015 May;166(4):236-43. doi: 10.1016/j.resmic.2014.07.017. Epub 2014 Aug 15. Review.

PMID:
25132133
47.

New amino acid germinants for spores of the enterotoxigenic Clostridium perfringens type A isolates.

Udompijitkul P, Alnoman M, Banawas S, Paredes-Sabja D, Sarker MR.

Food Microbiol. 2014 Dec;44:24-33. doi: 10.1016/j.fm.2014.04.011. Epub 2014 May 6.

PMID:
25084641
48.

Clostridium difficile spore biology: sporulation, germination, and spore structural proteins.

Paredes-Sabja D, Shen A, Sorg JA.

Trends Microbiol. 2014 Jul;22(7):406-16. doi: 10.1016/j.tim.2014.04.003. Epub 2014 May 7. Review.

49.

Clostridium difficile spores: a major threat to the hospital environment.

Barra-Carrasco J, Paredes-Sabja D.

Future Microbiol. 2014;9(4):475-86. doi: 10.2217/fmb.14.2. Review.

PMID:
24810347
50.

Characterization of the collagen-like exosporium protein, BclA1, of Clostridium difficile spores.

Pizarro-Guajardo M, Olguín-Araneda V, Barra-Carrasco J, Brito-Silva C, Sarker MR, Paredes-Sabja D.

Anaerobe. 2014 Feb;25:18-30. doi: 10.1016/j.anaerobe.2013.11.003. Epub 2013 Nov 21.

PMID:
24269655

Supplemental Content

Loading ...
Support Center