Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 224

1.

Engineering human megakaryocytic microparticles for targeted delivery of nucleic acids to hematopoietic stem and progenitor cells.

Kao CY, Papoutsakis ET.

Sci Adv. 2018 Nov 7;4(11):eaau6762. doi: 10.1126/sciadv.aau6762. eCollection 2018 Nov.

PMID:
30417099
2.

Direct cell-to-cell exchange of matter in a synthetic Clostridium syntrophy enables CO2 fixation, superior metabolite yields, and an expanded metabolic space.

Charubin K, Papoutsakis ET.

Metab Eng. 2018 Nov 1. pii: S1096-7176(18)30319-7. doi: 10.1016/j.ymben.2018.10.006. [Epub ahead of print]

PMID:
30391511
3.

Role of p53 and transcription-independent p53-induced apoptosis in shear-stimulated megakaryocytic maturation, particle generation, and platelet biogenesis.

Luff SA, Kao CY, Papoutsakis ET.

PLoS One. 2018 Sep 19;13(9):e0203991. doi: 10.1371/journal.pone.0203991. eCollection 2018.

4.

Engineering Clostridium organisms as microbial cell-factories: challenges & opportunities.

Charubin K, Bennett RK, Fast AG, Papoutsakis ET.

Metab Eng. 2018 Jul 25. pii: S1096-7176(18)30236-2. doi: 10.1016/j.ymben.2018.07.012. [Epub ahead of print] Review.

PMID:
30055325
5.

Small and Low but Potent: the Complex Regulatory Role of the Small RNA SolB in Solventogenesis in Clostridium acetobutylicum.

Jones AJ, Fast AG, Clupper M, Papoutsakis ET.

Appl Environ Microbiol. 2018 Jul 2;84(14). pii: e00597-18. doi: 10.1128/AEM.00597-18. Print 2018 Jul 15.

PMID:
29728392
7.

Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs.

Bennett RK, Steinberg LM, Chen W, Papoutsakis ET.

Curr Opin Biotechnol. 2018 Apr;50:81-93. doi: 10.1016/j.copbio.2017.11.010. Epub 2017 Dec 5. Review.

PMID:
29216497
8.
9.

Methanol assimilation in Escherichia coli is improved by co-utilization of threonine and deletion of leucine-responsive regulatory protein.

Gonzalez JE, Bennett RK, Papoutsakis ET, Antoniewicz MR.

Metab Eng. 2018 Jan;45:67-74. doi: 10.1016/j.ymben.2017.11.015. Epub 2017 Dec 2.

PMID:
29203222
10.
11.

In vitro methanol production from methyl coenzyme M using the Methanosarcina barkeri MtaABC protein complex.

Dong M, Gonzalez TD, Klems MM, Steinberg LM, Chen W, Papoutsakis ET, Bahnson BJ.

Biotechnol Prog. 2017 Sep;33(5):1243-1249. doi: 10.1002/btpr.2503. Epub 2017 Jun 12.

PMID:
28556629
12.

Sort-Seq Approach to Engineering a Formaldehyde-Inducible Promoter for Dynamically Regulated Escherichia coli Growth on Methanol.

Rohlhill J, Sandoval NR, Papoutsakis ET.

ACS Synth Biol. 2017 Aug 18;6(8):1584-1595. doi: 10.1021/acssynbio.7b00114. Epub 2017 May 9.

13.

How do megakaryocytic microparticles target and deliver cargo to alter the fate of hematopoietic stem cells?

Jiang J, Kao CY, Papoutsakis ET.

J Control Release. 2017 Feb 10;247:1-18. doi: 10.1016/j.jconrel.2016.12.021. Epub 2016 Dec 24.

14.

Genome analysis of a hyper acetone-butanol-ethanol (ABE) producing Clostridium acetobutylicum BKM19.

Cho C, Choe D, Jang YS, Kim KJ, Kim WJ, Cho BK, Papoutsakis ET, Bennett GN, Seung DY, Lee SY.

Biotechnol J. 2017 Feb;12(2). doi: 10.1002/biot.201600457. Epub 2017 Jan 16.

PMID:
27918147
15.

Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli.

Whitaker WB, Jones JA, Bennett RK, Gonzalez JE, Vernacchio VR, Collins SM, Palmer MA, Schmidt S, Antoniewicz MR, Koffas MA, Papoutsakis ET.

Metab Eng. 2017 Jan;39:49-59. doi: 10.1016/j.ymben.2016.10.015. Epub 2016 Nov 1.

PMID:
27815193
16.

Engineering membrane and cell-wall programs for tolerance to toxic chemicals: Beyond solo genes.

Sandoval NR, Papoutsakis ET.

Curr Opin Microbiol. 2016 Oct;33:56-66. doi: 10.1016/j.mib.2016.06.005. Epub 2016 Jul 1. Review.

17.

CO2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion.

Jones SW, Fast AG, Carlson ED, Wiedel CA, Au J, Antoniewicz MR, Papoutsakis ET, Tracy BP.

Nat Commun. 2016 Sep 30;7:12800. doi: 10.1038/ncomms12800.

18.

Stable and enhanced gene expression in Clostridium acetobutylicum using synthetic untranslated regions with a stem-loop.

Lee J, Jang YS, Papoutsakis ET, Lee SY.

J Biotechnol. 2016 Jul 20;230:40-3. doi: 10.1016/j.jbiotec.2016.05.020. Epub 2016 May 14.

PMID:
27188957
19.
20.

Whole-genome sequence of an evolved Clostridium pasteurianum strain reveals Spo0A deficiency responsible for increased butanol production and superior growth.

Sandoval NR, Venkataramanan KP, Groth TS, Papoutsakis ET.

Biotechnol Biofuels. 2015 Dec 24;8:227. doi: 10.1186/s13068-015-0408-7. eCollection 2015.

21.

Building cellular pathways and programs enabled by the genetic diversity of allo-genomes and meta-genomes.

Zingaro KA, Papoutsakis ET.

Curr Opin Biotechnol. 2015 Dec;36:16-31. doi: 10.1016/j.copbio.2015.08.005. Epub 2015 Aug 28. Review.

PMID:
26318075
22.

Complex and extensive post-transcriptional regulation revealed by integrative proteomic and transcriptomic analysis of metabolite stress response in Clostridium acetobutylicum.

Venkataramanan KP, Min L, Hou S, Jones SW, Ralston MT, Lee KH, Papoutsakis ET.

Biotechnol Biofuels. 2015 Jun 10;8:81. doi: 10.1186/s13068-015-0260-9. eCollection 2015.

23.

Editorial overview: Energy biotechnology.

Papoutsakis ET, Pronk JT.

Curr Opin Biotechnol. 2015 Jun;33:viii-xi. doi: 10.1016/j.copbio.2015.04.001. Epub 2015 May 18. No abstract available.

PMID:
25998091
24.

Expression of heterologous sigma factors enables functional screening of metagenomic and heterologous genomic libraries.

Gaida SM, Sandoval NR, Nicolaou SA, Chen Y, Venkataramanan KP, Papoutsakis ET.

Nat Commun. 2015 May 6;6:7045. doi: 10.1038/ncomms8045.

25.

Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization.

Whitaker WB, Sandoval NR, Bennett RK, Fast AG, Papoutsakis ET.

Curr Opin Biotechnol. 2015 Jun;33:165-75. doi: 10.1016/j.copbio.2015.01.007. Epub 2015 Mar 19. Review.

PMID:
25796071
26.

The Clostridium sporulation programs: diversity and preservation of endospore differentiation.

Al-Hinai MA, Jones SW, Papoutsakis ET.

Microbiol Mol Biol Rev. 2015 Mar;79(1):19-37. doi: 10.1128/MMBR.00025-14. Review.

27.

Capturing the response of Clostridium acetobutylicum to chemical stressors using a regulated genome-scale metabolic model.

Dash S, Mueller TJ, Venkataramanan KP, Papoutsakis ET, Maranas CD.

Biotechnol Biofuels. 2014 Oct 14;7(1):144. doi: 10.1186/s13068-014-0144-4. eCollection 2014.

28.

Overexpression of the Lactobacillus plantarum peptidoglycan biosynthesis murA2 gene increases the tolerance of Escherichia coli to alcohols and enhances ethanol production.

Yuan Y, Bi C, Nicolaou SA, Zingaro KA, Ralston M, Papoutsakis ET.

Appl Microbiol Biotechnol. 2014 Oct;98(19):8399-411. doi: 10.1007/s00253-014-6004-0. Epub 2014 Aug 31.

PMID:
25173692
29.

Shear enhances thrombopoiesis and formation of microparticles that induce megakaryocytic differentiation of stem cells.

Jiang J, Woulfe DS, Papoutsakis ET.

Blood. 2014 Sep 25;124(13):2094-103. doi: 10.1182/blood-2014-01-547927. Epub 2014 Jun 19.

30.

Exploring the heterologous genomic space for building, stepwise, complex, multicomponent tolerance to toxic chemicals.

Zingaro KA, Nicolaou SA, Yuan Y, Papoutsakis ET.

ACS Synth Biol. 2014 Jul 18;3(7):476-86. doi: 10.1021/sb400156v. Epub 2014 Feb 19.

PMID:
24933690
31.

Proteomic analyses of the phase transition from acidogenesis to solventogenesis using solventogenic and non-solventogenic Clostridium acetobutylicum strains.

Jang YS, Han MJ, Lee J, Im JA, Lee YH, Papoutsakis ET, Bennett G, Lee SY.

Appl Microbiol Biotechnol. 2014 Jun;98(11):5105-15. doi: 10.1007/s00253-014-5738-z. Epub 2014 Apr 18.

PMID:
24743985
32.

Platelets from mice lacking the aryl hydrocarbon receptor exhibit defective collagen-dependent signaling.

Lindsey S, Jiang J, Woulfe D, Papoutsakis ET.

J Thromb Haemost. 2014;12(3):383-94. doi: 10.1111/jth.12490.

33.

The Clostridium small RNome that responds to stress: the paradigm and importance of toxic metabolite stress in C. acetobutylicum.

Venkataramanan KP, Jones SW, McCormick KP, Kunjeti SG, Ralston MT, Meyers BC, Papoutsakis ET.

BMC Genomics. 2013 Dec 4;14:849. doi: 10.1186/1471-2164-14-849.

34.

Transcription factors and genetic circuits orchestrating the complex, multilayered response of Clostridium acetobutylicum to butanol and butyrate stress.

Wang Q, Venkataramanan KP, Huang H, Papoutsakis ET, Wu CH.

BMC Syst Biol. 2013 Nov 6;7:120. doi: 10.1186/1752-0509-7-120.

35.

σK of Clostridium acetobutylicum is the first known sporulation-specific sigma factor with two developmentally separated roles, one early and one late in sporulation.

Al-Hinai MA, Jones SW, Papoutsakis ET.

J Bacteriol. 2014 Jan;196(2):287-99. doi: 10.1128/JB.01103-13. Epub 2013 Nov 1.

36.

Dissecting the assays to assess microbial tolerance to toxic chemicals in bioprocessing.

Zingaro KA, Nicolaou SA, Papoutsakis ET.

Trends Biotechnol. 2013 Nov;31(11):643-53. doi: 10.1016/j.tibtech.2013.08.005. Epub 2013 Oct 1. Review.

PMID:
24094862
37.

Overexpression of fetA (ybbL) and fetB (ybbM), Encoding an Iron Exporter, Enhances Resistance to Oxidative Stress in Escherichia coli.

Nicolaou SA, Fast AG, Nakamaru-Ogiso E, Papoutsakis ET.

Appl Environ Microbiol. 2013 Dec;79(23):7210-9. doi: 10.1128/AEM.02322-13. Epub 2013 Sep 13.

38.

Synthetic tolerance: three noncoding small RNAs, DsrA, ArcZ and RprA, acting supra-additively against acid stress.

Gaida SM, Al-Hinai MA, Indurthi DC, Nicolaou SA, Papoutsakis ET.

Nucleic Acids Res. 2013 Oct;41(18):8726-37. doi: 10.1093/nar/gkt651. Epub 2013 Jul 27.

39.

Workflow for quantitative proteomic analysis of Clostridium acetobutylicum ATCC 824 using iTRAQ tags.

Hou S, Jones SW, Choe LH, Papoutsakis ET, Lee KH.

Methods. 2013 Jun 15;61(3):269-76. doi: 10.1016/j.ymeth.2013.03.013. Epub 2013 Mar 22.

PMID:
23523702
40.

Administration of nicotinamide does not increase platelet levels in mice.

Konieczna IM, Panuganti S, DeLuca TA, Papoutsakis ET, Eklund EA, Miller WM.

Blood Cells Mol Dis. 2013 Mar;50(3):171-6. doi: 10.1016/j.bcmd.2012.11.007. Epub 2012 Dec 21.

41.

Three-stage ex vivo expansion of high-ploidy megakaryocytic cells: toward large-scale platelet production.

Panuganti S, Schlinker AC, Lindholm PF, Papoutsakis ET, Miller WM.

Tissue Eng Part A. 2013 Apr;19(7-8):998-1014. doi: 10.1089/ten.TEA.2011.0111. Epub 2013 Jan 14.

42.
43.

Toward a semisynthetic stress response system to engineer microbial solvent tolerance.

Zingaro KA, Papoutsakis ET.

MBio. 2012 Oct 2;3(5). pii: e00308-12. doi: 10.1128/mBio.00308-12. Print 2012.

44.

Novel system for efficient isolation of Clostridium double-crossover allelic exchange mutants enabling markerless chromosomal gene deletions and DNA integration.

Al-Hinai MA, Fast AG, Papoutsakis ET.

Appl Environ Microbiol. 2012 Nov;78(22):8112-21. doi: 10.1128/AEM.02214-12. Epub 2012 Sep 14.

45.

Exploring the combinatorial genomic space in Escherichia coli for ethanol tolerance.

Nicolaou SA, Gaida SM, Papoutsakis ET.

Biotechnol J. 2012 Nov;7(11):1337-45. doi: 10.1002/biot.201200227. Epub 2012 Sep 5.

PMID:
22847918
46.

The evolving role of the aryl hydrocarbon receptor (AHR) in the normophysiology of hematopoiesis.

Lindsey S, Papoutsakis ET.

Stem Cell Rev. 2012 Dec;8(4):1223-35. doi: 10.1007/s12015-012-9384-5. Review.

47.

Proposed megakaryocytic regulon of p53: the genes engaged to control cell cycle and apoptosis during megakaryocytic differentiation.

Apostolidis PA, Lindsey S, Miller WM, Papoutsakis ET.

Physiol Genomics. 2012 Jun 15;44(12):638-50. doi: 10.1152/physiolgenomics.00028.2012. Epub 2012 May 1.

48.

Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation.

Lee J, Jang YS, Choi SJ, Im JA, Song H, Cho JH, Seung do Y, Papoutsakis ET, Bennett GN, Lee SY.

Appl Environ Microbiol. 2012 Mar;78(5):1416-23. doi: 10.1128/AEM.06382-11. Epub 2011 Dec 30.

49.

Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications.

Tracy BP, Jones SW, Fast AG, Indurthi DC, Papoutsakis ET.

Curr Opin Biotechnol. 2012 Jun;23(3):364-81. doi: 10.1016/j.copbio.2011.10.008. Epub 2011 Nov 11. Review.

PMID:
22079352
50.

Role of tumor suppressor p53 in megakaryopoiesis and platelet function.

Apostolidis PA, Woulfe DS, Chavez M, Miller WM, Papoutsakis ET.

Exp Hematol. 2012 Feb;40(2):131-42.e4. doi: 10.1016/j.exphem.2011.10.006. Epub 2011 Oct 21.

Supplemental Content

Loading ...
Support Center