Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 67

1.

Identifying stochastic oscillations in single-cell live imaging time series using Gaussian processes.

Phillips NE, Manning C, Papalopulu N, Rattray M.

PLoS Comput Biol. 2017 May 11;13(5):e1005479. doi: 10.1371/journal.pcbi.1005479. eCollection 2017 May.

2.

Stochasticity in the miR-9/Hes1 oscillatory network can account for clonal heterogeneity in the timing of differentiation.

Phillips NE, Manning CS, Pettini T, Biga V, Marinopoulou E, Stanley P, Boyd J, Bagnall J, Paszek P, Spiller DG, White MR, Goodfellow M, Galla T, Rattray M, Papalopulu N.

Elife. 2016 Oct 4;5. pii: e16118. doi: 10.7554/eLife.16118.

3.
4.

aPKC phosphorylates p27Xic1, providing a mechanistic link between apicobasal polarity and cell-cycle control.

Sabherwal N, Thuret R, Lea R, Stanley P, Papalopulu N.

Dev Cell. 2014 Dec 8;31(5):559-71. doi: 10.1016/j.devcel.2014.10.023.

5.

Dynein light intermediate chains maintain spindle bipolarity by functioning in centriole cohesion.

Jones LA, Villemant C, Starborg T, Salter A, Goddard G, Ruane P, Woodman PG, Papalopulu N, Woolner S, Allan VJ.

J Cell Biol. 2014 Nov 24;207(4):499-516. doi: 10.1083/jcb.201408025.

6.

Spatiotemporal lipid profiling during early embryo development of Xenopus laevis using dynamic ToF-SIMS imaging.

Tian H, Fletcher JS, Thuret R, Henderson A, Papalopulu N, Vickerman JC, Lockyer NP.

J Lipid Res. 2014 Sep;55(9):1970-80. doi: 10.1194/jlr.D048660. Epub 2014 May 22.

7.

A secretory cell type develops alongside multiciliated cells, ionocytes and goblet cells, and provides a protective, anti-infective function in the frog embryonic mucociliary epidermis.

Dubaissi E, Rousseau K, Lea R, Soto X, Nardeosingh S, Schweickert A, Amaya E, Thornton DJ, Papalopulu N.

Development. 2014 Apr;141(7):1514-25. doi: 10.1242/dev.102426. Epub 2014 Mar 5.

8.

microRNA input into a neural ultradian oscillator controls emergence and timing of alternative cell states.

Goodfellow M, Phillips NE, Manning C, Galla T, Papalopulu N.

Nat Commun. 2014 Mar 4;5:3399. doi: 10.1038/ncomms4399.

9.

Atypical protein kinase C couples cell sorting with primitive endoderm maturation in the mouse blastocyst.

Saiz N, Grabarek JB, Sabherwal N, Papalopulu N, Plusa B.

Development. 2013 Nov;140(21):4311-22. doi: 10.1242/dev.093922. Epub 2013 Sep 25.

10.

Inositol kinase and its product accelerate wound healing by modulating calcium levels, Rho GTPases, and F-actin assembly.

Soto X, Li J, Lea R, Dubaissi E, Papalopulu N, Amaya E.

Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):11029-34. doi: 10.1073/pnas.1217308110. Epub 2013 Jun 17.

11.

A bromodeoxyuridine (BrdU) based protocol for characterizing proliferating progenitors in Xenopus embryos.

Auger H, Thuret R, El Yakoubi W, Papalopulu N.

Methods Mol Biol. 2012;917:461-75. doi: 10.1007/978-1-61779-992-1_26.

PMID:
22956104
12.

Methods to analyze microRNA expression and function during Xenopus development.

Bonev B, Papalopulu N.

Methods Mol Biol. 2012;917:445-59. doi: 10.1007/978-1-61779-992-1_25.

PMID:
22956103
13.

Multicolor fluorescent in situ mRNA hybridization (FISH) on whole mounts and sections.

Lea R, Bonev B, Dubaissi E, Vize PD, Papalopulu N.

Methods Mol Biol. 2012;917:431-44. doi: 10.1007/978-1-61779-992-1_24.

PMID:
22956102
14.

Antibody development and use in chromogenic and fluorescent immunostaining.

Dubaissi E, Panagiotaki N, Papalopulu N, Vize PD.

Methods Mol Biol. 2012;917:411-29. doi: 10.1007/978-1-61779-992-1_23.

PMID:
22956101
15.

Apicobasal polarity and cell proliferation during development.

Sabherwal N, Papalopulu N.

Essays Biochem. 2012;53:95-109. doi: 10.1042/bse0530095. Review.

PMID:
22928511
16.

Following the fate of neural progenitors by homotopic/homochronic grafts in Xenopus embryos.

Thuret R, Papalopulu N.

Methods Mol Biol. 2012;916:203-15. doi: 10.1007/978-1-61779-980-8_16.

PMID:
22914943
17.

MicroRNA-9 Modulates Hes1 ultradian oscillations by forming a double-negative feedback loop.

Bonev B, Stanley P, Papalopulu N.

Cell Rep. 2012 Jul 26;2(1):10-8. doi: 10.1016/j.celrep.2012.05.017. Epub 2012 Jun 28.

18.

microRNA-9 regulates axon extension and branching by targeting Map1b in mouse cortical neurons.

Dajas-Bailador F, Bonev B, Garcez P, Stanley P, Guillemot F, Papalopulu N.

Nat Neurosci. 2012 Apr 8. doi: 10.1038/nn.3082. [Epub ahead of print]

PMID:
22484572
19.

Spindle position in symmetric cell divisions during epiboly is controlled by opposing and dynamic apicobasal forces.

Woolner S, Papalopulu N.

Dev Cell. 2012 Apr 17;22(4):775-87. doi: 10.1016/j.devcel.2012.01.002. Epub 2012 Mar 8.

20.

pTransgenesis: a cross-species, modular transgenesis resource.

Love NR, Thuret R, Chen Y, Ishibashi S, Sabherwal N, Paredes R, Alves-Silva J, Dorey K, Noble AM, Guille MJ, Sasai Y, Papalopulu N, Amaya E.

Development. 2011 Dec;138(24):5451-8. doi: 10.1242/dev.066498.

21.

MicroRNA-9 reveals regional diversity of neural progenitors along the anterior-posterior axis.

Bonev B, Pisco A, Papalopulu N.

Dev Cell. 2011 Jan 18;20(1):19-32. doi: 10.1016/j.devcel.2010.11.018.

22.

Embryonic frog epidermis: a model for the study of cell-cell interactions in the development of mucociliary disease.

Dubaissi E, Papalopulu N.

Dis Model Mech. 2011 Mar;4(2):179-92. doi: 10.1242/dmm.006494. Epub 2010 Dec 23.

23.

Characterisation of a new regulator of BDNF signalling, Sprouty3, involved in axonal morphogenesis in vivo.

Panagiotaki N, Dajas-Bailador F, Amaya E, Papalopulu N, Dorey K.

Development. 2010 Dec;137(23):4005-15. doi: 10.1242/dev.053173.

24.

FoxG1 and TLE2 act cooperatively to regulate ventral telencephalon formation.

Roth M, Bonev B, Lindsay J, Lea R, Panagiotaki N, Houart C, Papalopulu N.

Development. 2010 May;137(9):1553-62. doi: 10.1242/dev.044909. Epub 2010 Mar 31.

25.

The apicobasal polarity kinase aPKC functions as a nuclear determinant and regulates cell proliferation and fate during Xenopus primary neurogenesis.

Sabherwal N, Tsutsui A, Hodge S, Wei J, Chalmers AD, Papalopulu N.

Development. 2009 Aug;136(16):2767-77. doi: 10.1242/dev.034454.

26.

Integration of telencephalic Wnt and hedgehog signaling center activities by Foxg1.

Danesin C, Peres JN, Johansson M, Snowden V, Cording A, Papalopulu N, Houart C.

Dev Cell. 2009 Apr;16(4):576-87. doi: 10.1016/j.devcel.2009.03.007.

27.

Temporal and spatial expression of FGF ligands and receptors during Xenopus development.

Lea R, Papalopulu N, Amaya E, Dorey K.

Dev Dyn. 2009 Jun;238(6):1467-79. doi: 10.1002/dvdy.21913.

28.

Evading the annotation bottleneck: using sequence similarity to search non-sequence gene data.

Gilchrist MJ, Christensen MB, Harland R, Pollet N, Smith JC, Ueno N, Papalopulu N.

BMC Bioinformatics. 2008 Oct 17;9:442. doi: 10.1186/1471-2105-9-442.

29.

Rab32 regulates melanosome transport in Xenopus melanophores by protein kinase a recruitment.

Park M, Serpinskaya AS, Papalopulu N, Gelfand VI.

Curr Biol. 2007 Dec 4;17(23):2030-4. Epub 2007 Nov 8.

30.

The neural progenitor-specifying activity of FoxG1 is antagonistically regulated by CKI and FGF.

Regad T, Roth M, Bredenkamp N, Illing N, Papalopulu N.

Nat Cell Biol. 2007 May;9(5):531-40. Epub 2007 Apr 15.

PMID:
17435750
31.
32.

Grainyhead-like 3, a transcription factor identified in a microarray screen, promotes the specification of the superficial layer of the embryonic epidermis.

Chalmers AD, Lachani K, Shin Y, Sherwood V, Cho KW, Papalopulu N.

Mech Dev. 2006 Sep;123(9):702-18. Epub 2006 May 7.

33.
34.

A Xenopus tropicalis oligonucleotide microarray works across species using RNA from Xenopus laevis.

Chalmers AD, Goldstone K, Smith JC, Gilchrist M, Amaya E, Papalopulu N.

Mech Dev. 2005 Mar;122(3):355-63. Epub 2004 Oct 26.

35.
36.
37.

aPKC, Crumbs3 and Lgl2 control apicobasal polarity in early vertebrate development.

Chalmers AD, Pambos M, Mason J, Lang S, Wylie C, Papalopulu N.

Development. 2005 Mar;132(5):977-86. Epub 2005 Feb 2.

38.

Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo.

Plusa B, Frankenberg S, Chalmers A, Hadjantonakis AK, Moore CA, Papalopulu N, Papaioannou VE, Glover DM, Zernicka-Goetz M.

J Cell Sci. 2005 Feb 1;118(Pt 3):505-15. Epub 2005 Jan 18.

39.

Defining a large set of full-length clones from a Xenopus tropicalis EST project.

Gilchrist MJ, Zorn AM, Voigt J, Smith JC, Papalopulu N, Amaya E.

Dev Biol. 2004 Jul 15;271(2):498-516.

40.
42.
43.

Molecular components of the endoderm specification pathway in Xenopus tropicalis.

D'Souza A, Lee M, Taverner N, Mason J, Carruthers S, Smith JC, Amaya E, Papalopulu N, Zorn AM.

Dev Dyn. 2003 Jan;226(1):118-27.

44.

Techniques and probes for the study of Xenopus tropicalis development.

Khokha MK, Chung C, Bustamante EL, Gaw LW, Trott KA, Yeh J, Lim N, Lin JC, Taverner N, Amaya E, Papalopulu N, Smith JC, Zorn AM, Harland RM, Grammer TC.

Dev Dyn. 2002 Dec;225(4):499-510.

45.
46.

Transgenic Xenopus embryos reveal that anterior neural development requires continued suppression of BMP signaling after gastrulation.

Hartley KO, Hardcastle Z, Friday RV, Amaya E, Papalopulu N.

Dev Biol. 2001 Oct 1;238(1):168-84.

47.
48.

The oncogenic potential of the high mobility group box protein Sox3.

Xia Y, Papalopulu N, Vogt PK, Li J.

Cancer Res. 2000 Nov 15;60(22):6303-6.

49.
50.

Expression of Pax-3 in the lateral neural plate is dependent on a Wnt-mediated signal from posterior nonaxial mesoderm.

Bang AG, Papalopulu N, Goulding MD, Kintner C.

Dev Biol. 1999 Aug 15;212(2):366-80.

Supplemental Content

Loading ...
Support Center