Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 117

1.

A short-read genome assembly resource for Leveillula taurica causing powdery mildew disease of sweet pepper (Capsicum annuum).

Kusch S, Nemeth MZ, Vaghefi N, Ibrahim HMM, Panstruga R, Kiss L.

Mol Plant Microbe Interact. 2020 Mar 9. doi: 10.1094/MPMI-02-20-0029-A. [Epub ahead of print]

PMID:
32150511
2.

Cross-kingdom mimicry of the receptor signaling and leukocyte recruitment activity of a human cytokine by its plant orthologs.

Sinitski D, Gruner K, Brandhofer M, Kontos C, Winkler P, Reinstädler A, Bourilhon P, Xiao Z, Cool R, Kapurniotu A, Dekker FJ, Panstruga R, Bernhagen J.

J Biol Chem. 2020 Jan 17;295(3):850-867. doi: 10.1074/jbc.RA119.009716. Epub 2019 Dec 6.

PMID:
31811089
3.

Studying Plant MIF/D-DT-Like Genes and Proteins (MDLs).

Sinitski D, Gruner K, Bernhagen J, Panstruga R.

Methods Mol Biol. 2020;2080:249-261. doi: 10.1007/978-1-4939-9936-1_22.

PMID:
31745887
4.

Alloxan Disintegrates the Plant Cytoskeleton and Suppresses mlo-Mediated Powdery Mildew Resistance.

Wu H, Zhang W, Schuster M, Moch M, Windoffer R, Steinberg G, Staiger CJ, Panstruga R.

Plant Cell Physiol. 2020 Mar 1;61(3):505-518. doi: 10.1093/pcp/pcz216.

PMID:
31738423
5.

Cross-Kingdom Analysis of Diversity, Evolutionary History, and Site Selection within the Eukaryotic Macrophage Migration Inhibitory Factor Superfamily.

Michelet C, Danchin EGJ, Jaouannet M, Bernhagen J, Panstruga R, Kogel KH, Keller H, Coustau C.

Genes (Basel). 2019 Sep 24;10(10). pii: E740. doi: 10.3390/genes10100740.

6.

The Parauncinula polyspora Draft Genome Provides Insights into Patterns of Gene Erosion and Genome Expansion in Powdery Mildew Fungi.

Frantzeskakis L, Németh MZ, Barsoum M, Kusch S, Kiss L, Takamatsu S, Panstruga R.

mBio. 2019 Sep 24;10(5). pii: e01692-19. doi: 10.1128/mBio.01692-19.

7.

Rapid evolution in plant-microbe interactions - a molecular genomics perspective.

Frantzeskakis L, Di Pietro A, Rep M, Schirawski J, Wu CH, Panstruga R.

New Phytol. 2020 Feb;225(3):1134-1142. doi: 10.1111/nph.15966. Epub 2019 Jul 4. Review.

PMID:
31134629
8.

Arabidopsis mlo3 mutant plants exhibit spontaneous callose deposition and signs of early leaf senescence.

Kusch S, Thiery S, Reinstädler A, Gruner K, Zienkiewicz K, Feussner I, Panstruga R.

Plant Mol Biol. 2019 Sep;101(1-2):21-40. doi: 10.1007/s11103-019-00877-z. Epub 2019 May 2.

PMID:
31049793
9.

Nodulation Induces Systemic Resistance of Medicago truncatula and Pisum sativum Against Erysiphe pisi and Primes for Powdery Mildew-Triggered Salicylic Acid Accumulation.

Smigielski L, Laubach EM, Pesch L, Glock JML, Albrecht F, Slusarenko A, Panstruga R, Kuhn H.

Mol Plant Microbe Interact. 2019 Sep;32(9):1243-1255. doi: 10.1094/MPMI-11-18-0304-R. Epub 2019 Jul 30.

PMID:
31025899
10.

Focus Issue Editorial: Biotic Stress.

Jin H, Mitchum M, Panstruga R, Stone J.

Plant Physiol. 2019 Apr;179(4):1193-1195. doi: 10.1104/pp.19.00330. No abstract available.

PMID:
30940733
11.

The fungal ribonuclease-like effector protein CSEP0064/BEC1054 represses plant immunity and interferes with degradation of host ribosomal RNA.

Pennington HG, Jones R, Kwon S, Bonciani G, Thieron H, Chandler T, Luong P, Morgan SN, Przydacz M, Bozkurt T, Bowden S, Craze M, Wallington EJ, Garnett J, Kwaaitaal M, Panstruga R, Cota E, Spanu PD.

PLoS Pathog. 2019 Mar 11;15(3):e1007620. doi: 10.1371/journal.ppat.1007620. eCollection 2019 Mar.

12.

Multiple pairs of allelic MLA immune receptor-powdery mildew AVRA effectors argue for a direct recognition mechanism.

Saur IM, Bauer S, Kracher B, Lu X, Franzeskakis L, Müller MC, Sabelleck B, Kümmel F, Panstruga R, Maekawa T, Schulze-Lefert P.

Elife. 2019 Feb 19;8. pii: e44471. doi: 10.7554/eLife.44471.

13.

Widely Conserved Attenuation of Plant MAMP-Induced Calcium Influx by Bacteria Depends on Multiple Virulence Factors and May Involve Desensitization of Host Pattern Recognition Receptors.

Lammertz M, Kuhn H, Pfeilmeier S, Malone J, Zipfel C, Kwaaitaal M, Lin NC, Kvitko BH, Panstruga R.

Mol Plant Microbe Interact. 2019 May;32(5):608-621. doi: 10.1094/MPMI-10-18-0291-R. Epub 2019 Mar 29.

PMID:
30664393
14.

The need for speed: compartmentalized genome evolution in filamentous phytopathogens.

Frantzeskakis L, Kusch S, Panstruga R.

Mol Plant Pathol. 2019 Jan;20(1):3-7. doi: 10.1111/mpp.12738. No abstract available.

15.

Mutual interplay between phytopathogenic powdery mildew fungi and other microorganisms.

Panstruga R, Kuhn H.

Mol Plant Pathol. 2019 Apr;20(4):463-470. doi: 10.1111/mpp.12771. Epub 2019 Feb 18. Review.

16.

Small RNAs from cereal powdery mildew pathogens may target host plant genes.

Kusch S, Frantzeskakis L, Thieron H, Panstruga R.

Fungal Biol. 2018 Nov;122(11):1050-1063. doi: 10.1016/j.funbio.2018.08.008. Epub 2018 Sep 11.

PMID:
30342621
17.

Novel jack-in-the-box effector of the barley powdery mildew pathogen?

Sabelleck B, Panstruga R.

J Exp Bot. 2018 Jun 27;69(15):3511-3514. doi: 10.1093/jxb/ery192. No abstract available.

18.

Rapid evolution in the tug-of-war between microbes and plants.

Frantzeskakis L, von Dahlen JK, Panstruga R, Rose LE.

New Phytol. 2018 Jul;219(1):12-14. doi: 10.1111/nph.15220. No abstract available.

19.

Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen.

Frantzeskakis L, Kracher B, Kusch S, Yoshikawa-Maekawa M, Bauer S, Pedersen C, Spanu PD, Maekawa T, Schulze-Lefert P, Panstruga R.

BMC Genomics. 2018 May 22;19(1):381. doi: 10.1186/s12864-018-4750-6.

20.

Why did filamentous plant pathogens evolve the potential to secrete hundreds of effectors to enable disease?

Thordal-Christensen H, Birch PRJ, Spanu PD, Panstruga R.

Mol Plant Pathol. 2018 Apr;19(4):781-785. doi: 10.1111/mpp.12649. No abstract available.

21.

Arabidopsis MLO2 is a negative regulator of sensitivity to extracellular reactive oxygen species.

Cui F, Wu H, Safronov O, Zhang P, Kumar R, Kollist H, Salojärvi J, Panstruga R, Overmyer K.

Plant Cell Environ. 2018 Apr;41(4):782-796. doi: 10.1111/pce.13144. Epub 2018 Feb 22.

PMID:
29333607
22.

Chemical suppressors of mlo-mediated powdery mildew resistance.

Wu H, Kwaaitaal M, Strugala R, Schaffrath U, Bednarek P, Panstruga R.

Biosci Rep. 2017 Dec 12;37(6). pii: BSR20171389. doi: 10.1042/BSR20171389. Print 2017 Dec 22.

23.

The powdery mildew-resistant Arabidopsis mlo2 mlo6 mlo12 triple mutant displays altered infection phenotypes with diverse types of phytopathogens.

Acevedo-Garcia J, Gruner K, Reinstädler A, Kemen A, Kemen E, Cao L, Takken FLW, Reitz MU, Schäfer P, O'Connell RJ, Kusch S, Kuhn H, Panstruga R.

Sci Rep. 2017 Aug 24;7(1):9319. doi: 10.1038/s41598-017-07188-7.

24.

Key Components of Different Plant Defense Pathways Are Dispensable for Powdery Mildew Resistance of the Arabidopsis mlo2 mlo6 mlo12 Triple Mutant.

Kuhn H, Lorek J, Kwaaitaal M, Consonni C, Becker K, Micali C, Ver Loren van Themaat E, Bednarek P, Raaymakers TM, Appiano M, Bai Y, Meldau D, Baum S, Conrath U, Feussner I, Panstruga R.

Front Plant Sci. 2017 Jun 19;8:1006. doi: 10.3389/fpls.2017.01006. eCollection 2017.

25.

Editorial: Biotrophic Plant-Microbe Interactions.

Spanu PD, Panstruga R.

Front Plant Sci. 2017 Feb 13;8:192. doi: 10.3389/fpls.2017.00192. eCollection 2017. No abstract available.

26.

mlo-Based Resistance: An Apparently Universal "Weapon" to Defeat Powdery Mildew Disease.

Kusch S, Panstruga R.

Mol Plant Microbe Interact. 2017 Mar;30(3):179-189. doi: 10.1094/MPMI-12-16-0255-CR. Epub 2017 Mar 30. Review.

27.

mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach.

Acevedo-Garcia J, Spencer D, Thieron H, Reinstädler A, Hammond-Kosack K, Phillips AL, Panstruga R.

Plant Biotechnol J. 2017 Mar;15(3):367-378. doi: 10.1111/pbi.12631. Epub 2016 Sep 25.

28.

Biotrophy at Its Best: Novel Findings and Unsolved Mysteries of the Arabidopsis-Powdery Mildew Pathosystem.

Kuhn H, Kwaaitaal M, Kusch S, Acevedo-Garcia J, Wu H, Panstruga R.

Arabidopsis Book. 2016 Jun 30;14:e0184. doi: 10.1199/tab.0184. eCollection 2016.

29.

A simple test for the cleavage activity of customized endonucleases in plants.

Budhagatapalli N, Schedel S, Gurushidze M, Pencs S, Hiekel S, Rutten T, Kusch S, Morbitzer R, Lahaye T, Panstruga R, Kumlehn J, Hensel G.

Plant Methods. 2016 Mar 9;12:18. doi: 10.1186/s13007-016-0118-6. eCollection 2016.

30.

Mildew-Omics: How Global Analyses Aid the Understanding of Life and Evolution of Powdery Mildews.

Bindschedler LV, Panstruga R, Spanu PD.

Front Plant Sci. 2016 Feb 15;7:123. doi: 10.3389/fpls.2016.00123. eCollection 2016. Review.

31.

Comprehensive Phylogenetic Analysis Sheds Light on the Diversity and Origin of the MLO Family of Integral Membrane Proteins.

Kusch S, Pesch L, Panstruga R.

Genome Biol Evol. 2016 Mar 26;8(3):878-95. doi: 10.1093/gbe/evw036.

32.

Bacterial RNA - a new MAMP on the block?

Panstruga R.

New Phytol. 2016 Jan;209(2):458-60. doi: 10.1111/nph.13726. No abstract available.

33.

Introduction to a Virtual Special Issue on cell biology at the plant-microbe interface.

Panstruga R, Kuhn H.

New Phytol. 2015 Sep;207(4):931-8. doi: 10.1111/nph.13551. No abstract available.

34.

Phylogeny and evolution of plant macrophage migration inhibitory factor/D-dopachrome tautomerase-like proteins.

Panstruga R, Baumgarten K, Bernhagen J.

BMC Evol Biol. 2015 Apr 14;15:64. doi: 10.1186/s12862-015-0337-x.

35.

Magical mystery tour: MLO proteins in plant immunity and beyond.

Acevedo-Garcia J, Kusch S, Panstruga R.

New Phytol. 2014 Oct;204(2):273-81. doi: 10.1111/nph.12889. Review.

36.

In silico analysis of the core signaling proteome from the barley powdery mildew pathogen (Blumeria graminis f.sp. hordei).

Kusch S, Ahmadinejad N, Panstruga R, Kuhn H.

BMC Genomics. 2014 Oct 2;15:843. doi: 10.1186/1471-2164-15-843.

37.

Comparative analysis of MAMP-induced calcium influx in Arabidopsis seedlings and protoplasts.

Maintz J, Cavdar M, Tamborski J, Kwaaitaal M, Huisman R, Meesters C, Kombrink E, Panstruga R.

Plant Cell Physiol. 2014 Oct;55(10):1813-25. doi: 10.1093/pcp/pcu112. Epub 2014 Sep 16.

PMID:
25231962
38.

Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life.

Weßling R, Epple P, Altmann S, He Y, Yang L, Henz SR, McDonald N, Wiley K, Bader KC, Gläßer C, Mukhtar MS, Haigis S, Ghamsari L, Stephens AE, Ecker JR, Vidal M, Jones JD, Mayer KF, Ver Loren van Themaat E, Weigel D, Schulze-Lefert P, Dangl JL, Panstruga R, Braun P.

Cell Host Microbe. 2014 Sep 10;16(3):364-75. doi: 10.1016/j.chom.2014.08.004.

39.

The genome of the stress-tolerant wild tomato species Solanum pennellii.

Bolger A, Scossa F, Bolger ME, Lanz C, Maumus F, Tohge T, Quesneville H, Alseekh S, Sørensen I, Lichtenstein G, Fich EA, Conte M, Keller H, Schneeberger K, Schwacke R, Ofner I, Vrebalov J, Xu Y, Osorio S, Aflitos SA, Schijlen E, Jiménez-Goméz JM, Ryngajllo M, Kimura S, Kumar R, Koenig D, Headland LR, Maloof JN, Sinha N, van Ham RC, Lankhorst RK, Mao L, Vogel A, Arsova B, Panstruga R, Fei Z, Rose JK, Zamir D, Carrari F, Giovannoni JJ, Weigel D, Usadel B, Fernie AR.

Nat Genet. 2014 Sep;46(9):1034-8. doi: 10.1038/ng.3046. Epub 2014 Jul 27.

40.

Physiological characterization and genetic modifiers of aberrant root thigmomorphogenesis in mutants of Arabidopsis thaliana MILDEW LOCUS O genes.

Bidzinski P, Noir S, Shahi S, Reinstädler A, Gratkowska DM, Panstruga R.

Plant Cell Environ. 2014 Dec;37(12):2738-53. doi: 10.1111/pce.12353. Epub 2014 Jun 2.

41.

Introduction to a Virtual Special Issue on phytopathogen effector proteins.

Kuhn H, Panstruga R.

New Phytol. 2014 May;202(3):727-30. doi: 10.1111/nph.12804. No abstract available.

42.

Powdery mildew genomes reloaded.

Panstruga R, Spanu PD.

New Phytol. 2014 Apr;202(1):13-4. doi: 10.1111/nph.12635. No abstract available.

43.

Interaction of a Blumeria graminis f. sp. hordei effector candidate with a barley ARF-GAP suggests that host vesicle trafficking is a fungal pathogenicity target.

Schmidt SM, Kuhn H, Micali C, Liller C, Kwaaitaal M, Panstruga R.

Mol Plant Pathol. 2014 Aug;15(6):535-49. doi: 10.1111/mpp.12110. Epub 2014 Mar 3.

44.

Fine mapping and chromosome walking towards the Ror1 locus in barley (Hordeum vulgare L.).

Acevedo-Garcia J, Collins NC, Ahmadinejad N, Ma L, Houben A, Bednarek P, Benjdia M, Freialdenhoven A, Altmüller J, Nürnberg P, Reinhardt R, Schulze-Lefert P, Panstruga R.

Theor Appl Genet. 2013 Dec;126(12):2969-82. doi: 10.1007/s00122-013-2186-6. Epub 2013 Sep 17.

PMID:
24042571
45.

Host cell entry of powdery mildew is correlated with endosomal transport of antagonistically acting VvPEN1 and VvMLO to the papilla.

Feechan A, Jermakow AM, Ivancevic A, Godfrey D, Pak H, Panstruga R, Dry IB.

Mol Plant Microbe Interact. 2013 Oct;26(10):1138-50. doi: 10.1094/MPMI-04-13-0091-R.

46.

The role of Arabidopsis heterotrimeric G-protein subunits in MLO2 function and MAMP-triggered immunity.

Lorek J, Griebel T, Jones AM, Kuhn H, Panstruga R.

Mol Plant Microbe Interact. 2013 Sep;26(9):991-1003. doi: 10.1094/MPMI-03-13-0077-R.

47.

Structure and evolution of barley powdery mildew effector candidates.

Pedersen C, Ver Loren van Themaat E, McGuffin LJ, Abbott JC, Burgis TA, Barton G, Bindschedler LV, Lu X, Maekawa T, Wessling R, Cramer R, Thordal-Christensen H, Panstruga R, Spanu PD.

BMC Genomics. 2012 Dec 11;13:694. doi: 10.1186/1471-2164-13-694.

48.

Rapid quantification of plant-powdery mildew interactions by qPCR and conidiospore counts.

Weßling R, Panstruga R.

Plant Methods. 2012 Aug 31;8(1):35. doi: 10.1186/1746-4811-8-35.

49.

On the ligand binding profile and desensitization of plant ionotropic glutamate receptor (iGluR)-like channels functioning in MAMP-triggered Ca²⁺ influx.

Kwaaitaal M, Maintz J, Cavdar M, Panstruga R.

Plant Signal Behav. 2012 Nov;7(11):1373-7. doi: 10.4161/psb.21761. Epub 2012 Aug 23.

50.

Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses.

O'Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J, Torres MF, Damm U, Buiate EA, Epstein L, Alkan N, Altmüller J, Alvarado-Balderrama L, Bauser CA, Becker C, Birren BW, Chen Z, Choi J, Crouch JA, Duvick JP, Farman MA, Gan P, Heiman D, Henrissat B, Howard RJ, Kabbage M, Koch C, Kracher B, Kubo Y, Law AD, Lebrun MH, Lee YH, Miyara I, Moore N, Neumann U, Nordström K, Panaccione DG, Panstruga R, Place M, Proctor RH, Prusky D, Rech G, Reinhardt R, Rollins JA, Rounsley S, Schardl CL, Schwartz DC, Shenoy N, Shirasu K, Sikhakolli UR, Stüber K, Sukno SA, Sweigard JA, Takano Y, Takahara H, Trail F, van der Does HC, Voll LM, Will I, Young S, Zeng Q, Zhang J, Zhou S, Dickman MB, Schulze-Lefert P, Ver Loren van Themaat E, Ma LJ, Vaillancourt LJ.

Nat Genet. 2012 Sep;44(9):1060-5. doi: 10.1038/ng.2372. Epub 2012 Aug 12.

PMID:
22885923

Supplemental Content

Loading ...
Support Center