Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 16

1.

Mapping the urea channel through the rabbit Na(+)-glucose cotransporter SGLT1.

Panayotova-Heiermann M, Wright EM.

J Physiol. 2001 Sep 1;535(Pt 2):419-25.

2.

Purification and functional reconstitution of a truncated human Na(+)/glucose cotransporter (SGLT1) expressed in E. coli.

Panayotova-Heiermann M, Leung DW, Hirayama BA, Wright EM.

FEBS Lett. 1999 Oct 15;459(3):386-90.

3.

Structure and function of the Na+/glucose cotransporter.

Wright EM, Loo DD, Panayotova-Heiermann M, Hirayama BA, Turk E, Eskandari S, Lam JT.

Acta Physiol Scand Suppl. 1998 Aug;643:257-64. Review.

PMID:
9789568
4.

Neutralization of conservative charged transmembrane residues in the Na+/glucose cotransporter SGLT1.

Panayotova-Heiermann M, Loo DD, Lam JT, Wright EM.

Biochemistry. 1998 Jul 21;37(29):10522-8.

PMID:
9671524
5.

Five transmembrane helices form the sugar pathway through the Na+/glucose cotransporter.

Panayotova-Heiermann M, Eskandari S, Turk E, Zampighi GA, Wright EM.

J Biol Chem. 1997 Aug 15;272(33):20324-7.

6.

Biophysical characteristics of the pig kidney Na+/glucose cotransporter SGLT2 reveal a common mechanism for SGLT1 and SGLT2.

Mackenzie B, Loo DD, Panayotova-Heiermann M, Wright EM.

J Biol Chem. 1996 Dec 20;271(51):32678-83.

7.

Kinetic and specificity differences between rat, human, and rabbit Na+-glucose cotransporters (SGLT-1).

Hirayama BA, Lostao MP, Panayotova-Heiermann M, Loo DD, Turk E, Wright EM.

Am J Physiol. 1996 Jun;270(6 Pt 1):G919-26.

PMID:
8764197
8.

Sugar binding to Na+/glucose cotransporters is determined by the carboxyl-terminal half of the protein.

Panayotova-Heiermann M, Loo DD, Kong CT, Lever JE, Wright EM.

J Biol Chem. 1996 Apr 26;271(17):10029-34.

9.

Arginine-427 in the Na+/glucose cotransporter (SGLT1) is involved in trafficking to the plasma membrane.

Lostao MP, Hirayama BA, Panayotova-Heiermann M, Sampogna SL, Bok D, Wright EM.

FEBS Lett. 1995 Dec 18;377(2):181-4.

10.

Kinetics of steady-state currents and charge movements associated with the rat Na+/glucose cotransporter.

Panayotova-Heiermann M, Loo DD, Wright EM.

J Biol Chem. 1995 Nov 10;270(45):27099-105.

11.

'Active' sugar transport in eukaryotes.

Wright EM, Loo DD, Panayotova-Heiermann M, Lostao MP, Hirayama BH, Mackenzie B, Boorer K, Zampighi G.

J Exp Biol. 1994 Nov;196:197-212. Review.

12.

SAAT1 is a low affinity Na+/glucose cotransporter and not an amino acid transporter. A reinterpretation.

Mackenzie B, Panayotova-Heiermann M, Loo DD, Lever JE, Wright EM.

J Biol Chem. 1994 Sep 9;269(36):22488-91.

13.

Sodium/D-glucose cotransporter charge movements involve polar residues.

Panayotova-Heiermann M, Loo DD, Lostao MP, Wright EM.

J Biol Chem. 1994 Aug 19;269(33):21016-20.

14.

Mechanisms of Na(+)-glucose cotransport.

Wright EM, Loo DD, Panayotova-Heiermann M, Boorer KJ.

Biochem Soc Trans. 1994 Aug;22(3):646-50. No abstract available.

PMID:
7821655
15.

Sequence comparison of the sodium-D-glucose cotransport systems in rabbit renal and intestinal epithelia.

Morrison AI, Panayotova-Heiermann M, Feigl G, Schölermann B, Kinne RK.

Biochim Biophys Acta. 1991 May 2;1089(1):121-3.

PMID:
2025641
16.

Characterization of an estradiol-stimulated mRNA in the brain of adult male rats.

Nalik P, Panayotova-Heiermann M, Pongs O.

Mol Cell Endocrinol. 1989 Apr;62(2):235-42.

PMID:
2744228

Supplemental Content

Loading ...
Support Center