Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 177

1.

Phycobilisomes Harbor FNRL in Cyanobacteria.

Liu H, Weisz DA, Zhang MM, Cheng M, Zhang B, Zhang H, Gerstenecker GS, Pakrasi HB, Gross ML, Blankenship RE.

MBio. 2019 Apr 23;10(2). pii: e00669-19. doi: 10.1128/mBio.00669-19.

2.

Influence of Chemically Disrupted Photosynthesis on Cyanobacterial Thylakoid Dynamics in Synechocystis sp. PCC 6803.

Stingaciu LR, O'Neill HM, Liberton M, Pakrasi HB, Urban VS.

Sci Rep. 2019 Apr 5;9(1):5711. doi: 10.1038/s41598-019-42024-0.

3.

Reply to Zhou and Li: Plasticity of the genomic haplotype of Synechococcus elongatus leads to rapid strain adaptation under laboratory conditions.

Ungerer J, Wendt KE, Hendry JI, Maranas CD, Pakrasi HB.

Proc Natl Acad Sci U S A. 2019 Feb 12. pii: 201900792. doi: 10.1073/pnas.1900792116. [Epub ahead of print] No abstract available.

PMID:
30755539
4.
5.

Enhanced Nitrogen Fixation in a glgX-Deficient Strain of Cyanothece sp. Strain ATCC 51142, a Unicellular Nitrogen-Fixing Cyanobacterium.

Liberton M, Bandyopadhyay A, Pakrasi HB.

Appl Environ Microbiol. 2019 Mar 22;85(7). pii: e02887-18. doi: 10.1128/AEM.02887-18. Print 2019 Apr 1.

PMID:
30709817
6.

A diurnal flux balance model of Synechocystis sp. PCC 6803 metabolism.

Sarkar D, Mueller TJ, Liu D, Pakrasi HB, Maranas CD.

PLoS Comput Biol. 2019 Jan 24;15(1):e1006692. doi: 10.1371/journal.pcbi.1006692. eCollection 2019 Jan.

7.

Genome-Scale Fluxome of Synechococcus elongatus UTEX 2973 Using Transient 13C-Labeling Data.

Hendry JI, Gopalakrishnan S, Ungerer J, Pakrasi HB, Tang YJ, Maranas CD.

Plant Physiol. 2019 Feb;179(2):761-769. doi: 10.1104/pp.18.01357. Epub 2018 Dec 14.

8.

Engineering cyanobacteria for production of terpenoids.

Lin PC, Pakrasi HB.

Planta. 2019 Jan;249(1):145-154. doi: 10.1007/s00425-018-3047-y. Epub 2018 Nov 21. Review.

PMID:
30465115
9.

Genome Features and Biochemical Characteristics of a Robust, Fast Growing and Naturally Transformable Cyanobacterium Synechococcus elongatus PCC 11801 Isolated from India.

Jaiswal D, Sengupta A, Sohoni S, Sengupta S, Phadnavis AG, Pakrasi HB, Wangikar PP.

Sci Rep. 2018 Nov 9;8(1):16632. doi: 10.1038/s41598-018-34872-z.

10.

Comparative genomics reveals the molecular determinants of rapid growth of the cyanobacterium Synechococcus elongatus UTEX 2973.

Ungerer J, Wendt KE, Hendry JI, Maranas CD, Pakrasi HB.

Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):E11761-E11770. doi: 10.1073/pnas.1814912115. Epub 2018 Nov 8.

11.

Engineering Nitrogen Fixation Activity in an Oxygenic Phototroph.

Liu D, Liberton M, Yu J, Pakrasi HB, Bhattacharyya-Pakrasi M.

MBio. 2018 Jun 5;9(3). pii: e01029-18. doi: 10.1128/mBio.01029-18.

12.

Recent advances in synthetic biology of cyanobacteria.

Sengupta A, Pakrasi HB, Wangikar PP.

Appl Microbiol Biotechnol. 2018 Jul;102(13):5457-5471. doi: 10.1007/s00253-018-9046-x. Epub 2018 May 9. Review.

PMID:
29744631
13.

Exploring native genetic elements as plug-in tools for synthetic biology in the cyanobacterium Synechocystis sp. PCC 6803.

Liu D, Pakrasi HB.

Microb Cell Fact. 2018 Mar 26;17(1):48. doi: 10.1186/s12934-018-0897-8.

14.

Elucidation of photoautotrophic carbon flux topology in Synechocystis PCC 6803 using genome-scale carbon mapping models.

Gopalakrishnan S, Pakrasi HB, Maranas CD.

Metab Eng. 2018 May;47:190-199. doi: 10.1016/j.ymben.2018.03.008. Epub 2018 Mar 9.

PMID:
29526818
15.

Emerging platforms for co-utilization of one-carbon substrates by photosynthetic organisms.

Singh AK, Kishore GM, Pakrasi HB.

Curr Opin Biotechnol. 2018 Oct;53:201-208. doi: 10.1016/j.copbio.2018.02.002. Epub 2018 Mar 3. Review.

PMID:
29510332
16.
17.

Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocysti s sp. PCC 6803.

Lin PC, Saha R, Zhang F, Pakrasi HB.

Sci Rep. 2017 Dec 13;7(1):17503. doi: 10.1038/s41598-017-17831-y.

18.

Deciphering cyanobacterial phenotypes for fast photoautotrophic growth via isotopically nonstationary metabolic flux analysis.

Abernathy MH, Yu J, Ma F, Liberton M, Ungerer J, Hollinshead WD, Gopalakrishnan S, He L, Maranas CD, Pakrasi HB, Allen DK, Tang YJ.

Biotechnol Biofuels. 2017 Nov 16;10:273. doi: 10.1186/s13068-017-0958-y. eCollection 2017.

19.

Reactive oxygen species leave a damage trail that reveals water channels in Photosystem II.

Weisz DA, Gross ML, Pakrasi HB.

Sci Adv. 2017 Nov 17;3(11):eaao3013. doi: 10.1126/sciadv.aao3013. eCollection 2017 Nov.

20.

Cyanobacteria: Promising biocatalysts for sustainable chemical production.

Knoot CJ, Ungerer J, Wangikar PP, Pakrasi HB.

J Biol Chem. 2018 Apr 6;293(14):5044-5052. doi: 10.1074/jbc.R117.815886. Epub 2017 Oct 2. Review.

21.

Population-level coordination of pigment response in individual cyanobacterial cells under altered nitrogen levels.

Murton J, Nagarajan A, Nguyen AY, Liberton M, Hancock HA, Pakrasi HB, Timlin JA.

Photosynth Res. 2017 Nov;134(2):165-174. doi: 10.1007/s11120-017-0422-7. Epub 2017 Jul 21.

22.

Phycobilisome truncation causes widespread proteome changes in Synechocystis sp. PCC 6803.

Liberton M, Chrisler WB, Nicora CD, Moore RJ, Smith RD, Koppenaal DW, Pakrasi HB, Jacobs JM.

PLoS One. 2017 Mar 2;12(3):e0173251. doi: 10.1371/journal.pone.0173251. eCollection 2017.

23.

Mass spectrometry-based cross-linking study shows that the Psb28 protein binds to cytochrome b559 in Photosystem II.

Weisz DA, Liu H, Zhang H, Thangapandian S, Tajkhorshid E, Gross ML, Pakrasi HB.

Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2224-2229. doi: 10.1073/pnas.1620360114. Epub 2017 Feb 13.

24.

Identifying the Metabolic Differences of a Fast-Growth Phenotype in Synechococcus UTEX 2973.

Mueller TJ, Ungerer JL, Pakrasi HB, Maranas CD.

Sci Rep. 2017 Jan 31;7:41569. doi: 10.1038/srep41569.

25.

The proteolysis adaptor, NblA, binds to the N-terminus of β-phycocyanin: Implications for the mechanism of phycobilisome degradation.

Nguyen AY, Bricker WP, Zhang H, Weisz DA, Gross ML, Pakrasi HB.

Photosynth Res. 2017 Apr;132(1):95-106. doi: 10.1007/s11120-016-0334-y. Epub 2017 Jan 11.

26.

Reevaluating the mechanism of excitation energy regulation in iron-starved cyanobacteria.

Chen HS, Liberton M, Pakrasi HB, Niedzwiedzki DM.

Biochim Biophys Acta Bioenerg. 2017 Mar;1858(3):249-258. doi: 10.1016/j.bbabio.2017.01.001. Epub 2017 Jan 8.

27.

Cpf1 Is A Versatile Tool for CRISPR Genome Editing Across Diverse Species of Cyanobacteria.

Ungerer J, Pakrasi HB.

Sci Rep. 2016 Dec 21;6:39681. doi: 10.1038/srep39681.

28.

Correction for Berla and Pakrasi, Upregulation of Plasmid Genes during Stationary Phase in Synechocystis sp. Strain PCC 6803, a Cyanobacterium.

Berla BM, Pakrasi HB.

Appl Environ Microbiol. 2016 Sep 30;82(20):6291. Print 2016 Oct 15. No abstract available.

29.

A Novel Redoxin in the Thylakoid Membrane Regulates the Titer of Photosystem I.

Zhu Y, Liberton M, Pakrasi HB.

J Biol Chem. 2016 Sep 2;291(36):18689-99. doi: 10.1074/jbc.M116.721175. Epub 2016 Jul 5.

30.

CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973.

Wendt KE, Ungerer J, Cobb RE, Zhao H, Pakrasi HB.

Microb Cell Fact. 2016 Jun 23;15(1):115. doi: 10.1186/s12934-016-0514-7.

31.

The Use of Advanced Mass Spectrometry to Dissect the Life-Cycle of Photosystem II.

Weisz DA, Gross ML, Pakrasi HB.

Front Plant Sci. 2016 May 10;7:617. doi: 10.3389/fpls.2016.00617. eCollection 2016. Review.

32.

Diurnal Regulation of Cellular Processes in the Cyanobacterium Synechocystis sp. Strain PCC 6803: Insights from Transcriptomic, Fluxomic, and Physiological Analyses.

Saha R, Liu D, Hoynes-O'Connor A, Liberton M, Yu J, Bhattacharyya-Pakrasi M, Balassy A, Zhang F, Moon TS, Maranas CD, Pakrasi HB.

MBio. 2016 May 3;7(3). pii: e00464-16. doi: 10.1128/mBio.00464-16.

33.

Global Proteomic Analysis Reveals an Exclusive Role of Thylakoid Membranes in Bioenergetics of a Model Cyanobacterium.

Liberton M, Saha R, Jacobs JM, Nguyen AY, Gritsenko MA, Smith RD, Koppenaal DW, Pakrasi HB.

Mol Cell Proteomics. 2016 Jun;15(6):2021-32. doi: 10.1074/mcp.M115.057240. Epub 2016 Apr 7.

34.

Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells.

Stingaciu LR, O'Neill H, Liberton M, Urban VS, Pakrasi HB, Ohl M.

Sci Rep. 2016 Jan 21;6:19627. doi: 10.1038/srep19627.

35.

Identifying Regulatory Changes to Facilitate Nitrogen Fixation in the Nondiazotroph Synechocystis sp. PCC 6803.

Mueller TJ, Welsh EA, Pakrasi HB, Maranas CD.

ACS Synth Biol. 2016 Mar 18;5(3):250-8. doi: 10.1021/acssynbio.5b00202. Epub 2016 Jan 7.

PMID:
26692191
36.

Cyanobacterial Alkanes Modulate Photosynthetic Cyclic Electron Flow to Assist Growth under Cold Stress.

Berla BM, Saha R, Maranas CD, Pakrasi HB.

Sci Rep. 2015 Oct 13;5:14894. doi: 10.1038/srep14894.

37.

Fine-Tuning of Photoautotrophic Protein Production by Combining Promoters and Neutral Sites in the Cyanobacterium Synechocystis sp. Strain PCC 6803.

Ng AH, Berla BM, Pakrasi HB.

Appl Environ Microbiol. 2015 Oct;81(19):6857-63. doi: 10.1128/AEM.01349-15. Epub 2015 Jul 24.

38.

Multiple copies of the PsbQ protein in a cyanobacterial photosystem II assembly intermediate complex.

Liu H, Weisz DA, Pakrasi HB.

Photosynth Res. 2015 Dec;126(2-3):375-83. doi: 10.1007/s11120-015-0123-z. Epub 2015 Mar 24.

PMID:
25800517
39.

Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO₂.

Yu J, Liberton M, Cliften PF, Head RD, Jacobs JM, Smith RD, Koppenaal DW, Brand JJ, Pakrasi HB.

Sci Rep. 2015 Jan 30;5:8132. doi: 10.1038/srep08132.

40.

An atypical psbA gene encodes a sentinel D1 protein to form a physiologically relevant inactive photosystem II complex in cyanobacteria.

Wegener KM, Nagarajan A, Pakrasi HB.

J Biol Chem. 2015 Feb 6;290(6):3764-74. doi: 10.1074/jbc.M114.604124. Epub 2014 Dec 18.

41.

Consequences of Decreased Light Harvesting Capability on Photosystem II Function in Synechocystis sp. PCC 6803.

Nagarajan A, Page LE, Liberton M, Pakrasi HB.

Life (Basel). 2014 Dec 11;4(4):903-14. doi: 10.3390/life4040903.

42.

Proteome-wide light/dark modulation of thiol oxidation in cyanobacteria revealed by quantitative site-specific redox proteomics.

Guo J, Nguyen AY, Dai Z, Su D, Gaffrey MJ, Moore RJ, Jacobs JM, Monroe ME, Smith RD, Koppenaal DW, Pakrasi HB, Qian WJ.

Mol Cell Proteomics. 2014 Dec;13(12):3270-85. doi: 10.1074/mcp.M114.041160. Epub 2014 Aug 12.

43.

Proteomic profiles of five strains of oxygenic photosynthetic cyanobacteria of the genus Cyanothece.

Aryal UK, Callister SJ, McMahon BH, McCue LA, Brown J, Stöckel J, Liberton M, Mishra S, Zhang X, Nicora CD, Angel TE, Koppenaal DW, Smith RD, Pakrasi HB, Sherman LA.

J Proteome Res. 2014 Jul 3;13(7):3262-76. doi: 10.1021/pr5000889. Epub 2014 Jun 4.

PMID:
24846609
44.

13C-MFA delineates the photomixotrophic metabolism of Synechocystis sp. PCC 6803 under light- and carbon-sufficient conditions.

You L, Berla B, He L, Pakrasi HB, Tang YJ.

Biotechnol J. 2014 May;9(5):684-92. doi: 10.1002/biot.201300477. Epub 2014 Apr 16.

PMID:
24659531
45.

MS-based cross-linking analysis reveals the location of the PsbQ protein in cyanobacterial photosystem II.

Liu H, Zhang H, Weisz DA, Vidavsky I, Gross ML, Pakrasi HB.

Proc Natl Acad Sci U S A. 2014 Mar 25;111(12):4638-43. doi: 10.1073/pnas.1323063111. Epub 2014 Feb 18.

46.

Rapid construction of metabolic models for a family of Cyanobacteria using a multiple source annotation workflow.

Mueller TJ, Berla BM, Pakrasi HB, Maranas CD.

BMC Syst Biol. 2013 Dec 27;7:142. doi: 10.1186/1752-0509-7-142.

47.

Probing the consequences of antenna modification in cyanobacteria.

Liberton M, Collins AM, Page LE, O'Dell WB, O'Neill H, Urban VS, Timlin JA, Pakrasi HB.

Photosynth Res. 2013 Nov;118(1-2):17-24. doi: 10.1007/s11120-013-9940-0. Epub 2013 Oct 17. Review.

PMID:
24132812
48.

Synthetic biology of cyanobacteria: unique challenges and opportunities.

Berla BM, Saha R, Immethun CM, Maranas CD, Moon TS, Pakrasi HB.

Front Microbiol. 2013 Aug 27;4:246. doi: 10.3389/fmicb.2013.00246. eCollection 2013. Review.

49.

Mass spectrometry-based footprinting reveals structural dynamics of loop E of the chlorophyll-binding protein CP43 during photosystem II assembly in the cyanobacterium Synechocystis 6803.

Liu H, Chen J, Huang RY, Weisz D, Gross ML, Pakrasi HB.

J Biol Chem. 2013 May 17;288(20):14212-20. doi: 10.1074/jbc.M113.467613. Epub 2013 Apr 1.

50.

Carbon availability affects diurnally controlled processes and cell morphology of Cyanothece 51142.

Stöckel J, Elvitigala TR, Liberton M, Pakrasi HB.

PLoS One. 2013;8(2):e56887. doi: 10.1371/journal.pone.0056887. Epub 2013 Feb 15.

Supplemental Content

Loading ...
Support Center