Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 109

1.

Contributions of Parietal Cortex to the Working Memory of an Obstacle Acquired Visually or Tactilely in the Locomoting Cat.

Wong C, Pearson KG, Lomber SG.

Cereb Cortex. 2018 Sep 1;28(9):3143-3158. doi: 10.1093/cercor/bhx186.

2.

Memory-Guided Stumbling Correction in the Hindlimb of Quadrupeds Relies on Parietal Area 5.

Wong C, Wong G, Pearson KG, Lomber SG.

Cereb Cortex. 2018 Feb 1;28(2):561-573. doi: 10.1093/cercor/bhw391.

PMID:
28013232
3.

Leg mechanics contribute to establishing swing phase trajectories during memory-guided stepping movements in walking cats: a computational analysis.

Pearson KG, Arbabzada N, Gramlich R, Shinya M.

Front Comput Neurosci. 2015 Sep 24;9:116. doi: 10.3389/fncom.2015.00116. eCollection 2015.

4.

Long-lasting working memories of obstacles established by foreleg stepping in walking cats require area 5 of the posterior parietal cortex.

McVea DA, Taylor AJ, Pearson KG.

J Neurosci. 2009 Jul 22;29(29):9396-404. doi: 10.1523/JNEUROSCI.0746-09.2009.

5.

Spinal 5-HT7 receptors are critical for alternating activity during locomotion: in vitro neonatal and in vivo adult studies using 5-HT7 receptor knockout mice.

Liu J, Akay T, Hedlund PB, Pearson KG, Jordan LM.

J Neurophysiol. 2009 Jul;102(1):337-48. doi: 10.1152/jn.91239.2008. Epub 2009 May 20.

6.

Object avoidance during locomotion.

McVea DA, Pearson KG.

Adv Exp Med Biol. 2009;629:293-315. doi: 10.1007/978-0-387-77064-2_15. Review.

PMID:
19227506
7.

Force regulation of ankle extensor muscle activity in freely walking cats.

Donelan JM, McVea DA, Pearson KG.

J Neurophysiol. 2009 Jan;101(1):360-71. doi: 10.1152/jn.90918.2008. Epub 2008 Nov 19.

8.

New technique for drug application to the spinal cord of walking mice.

Akay T, Fouad K, Pearson KG.

J Neurosci Methods. 2008 Jun 15;171(1):39-47. doi: 10.1016/j.jneumeth.2008.02.001. Epub 2008 Feb 12.

PMID:
18355923
9.

Descending command systems for the initiation of locomotion in mammals.

Jordan LM, Liu J, Hedlund PB, Akay T, Pearson KG.

Brain Res Rev. 2008 Jan;57(1):183-91. Epub 2007 Aug 22. Review.

PMID:
17928060
10.

Contextual learning and obstacle memory in the walking cat.

McVea DA, Pearson KG.

Integr Comp Biol. 2007 Oct;47(4):457-64. doi: 10.1093/icb/icm053. Epub 2007 Jun 22.

PMID:
21672854
11.

Role of sensory feedback in the control of stance duration in walking cats.

Pearson KG.

Brain Res Rev. 2008 Jan;57(1):222-7. Epub 2007 Jul 29. Review.

PMID:
17761295
12.

Stepping of the forelegs over obstacles establishes long-lasting memories in cats.

McVea DA, Pearson KG.

Curr Biol. 2007 Aug 21;17(16):R621-3. No abstract available.

13.
14.

Coordination of fore and hind leg stepping in cats on a transversely-split treadmill.

Akay T, McVea DA, Tachibana A, Pearson KG.

Exp Brain Res. 2006 Nov;175(2):211-22. Epub 2006 May 30.

PMID:
16733696
15.

Behavioral and electromyographic characterization of mice lacking EphA4 receptors.

Akay T, Acharya HJ, Fouad K, Pearson KG.

J Neurophysiol. 2006 Aug;96(2):642-51. Epub 2006 Apr 26.

16.

Long-lasting memories of obstacles guide leg movements in the walking cat.

McVea DA, Pearson KG.

J Neurosci. 2006 Jan 25;26(4):1175-8.

17.

Recruitment of gastrocnemius muscles during the swing phase of stepping following partial denervation of knee flexor muscles in the cat.

Tachibana A, McVea DA, Donelan JM, Pearson KG.

Exp Brain Res. 2006 Mar;169(4):449-60. Epub 2005 Oct 28.

PMID:
16261338
18.

A role for hip position in initiating the swing-to-stance transition in walking cats.

McVea DA, Donelan JM, Tachibana A, Pearson KG.

J Neurophysiol. 2005 Nov;94(5):3497-508. Epub 2005 Aug 10.

19.

A new electrode configuration for recording electromyographic activity in behaving mice.

Pearson KG, Acharya H, Fouad K.

J Neurosci Methods. 2005 Oct 15;148(1):36-42.

PMID:
15908013
20.

Contribution of sensory feedback to ongoing ankle extensor activity during the stance phase of walking.

Donelan JM, Pearson KG.

Can J Physiol Pharmacol. 2004 Aug-Sep;82(8-9):589-98. Review.

PMID:
15523516
21.

Contribution of force feedback to ankle extensor activity in decerebrate walking cats.

Donelan JM, Pearson KG.

J Neurophysiol. 2004 Oct;92(4):2093-104.

22.

Spinal cord injury reveals unexpected function of cutaneous receptors.

Pearson KG.

J Neurophysiol. 2003 Dec;90(6):3583-4. No abstract available.

23.

Generating the walking gait: role of sensory feedback.

Pearson KG.

Prog Brain Res. 2004;143:123-9. Review.

PMID:
14653157
24.
25.

Capabilities of a penetrating microelectrode array for recording single units in dorsal root ganglia of the cat.

Aoyagi Y, Stein RB, Branner A, Pearson KG, Normann RA.

J Neurosci Methods. 2003 Sep 30;128(1-2):9-20.

PMID:
12948544
26.
27.

Sartorius muscle afferents influence the amplitude and timing of flexor activity in walking decerebrate cats.

Lam T, Pearson KG.

Exp Brain Res. 2002 Nov;147(2):175-85. Epub 2002 Sep 13.

PMID:
12410332
28.

The role of proprioceptive feedback in the regulation and adaptation of locomotor activity.

Lam T, Pearson KG.

Adv Exp Med Biol. 2002;508:343-55. Review.

PMID:
12171130
29.
30.
31.
32.

Adaptive locomotor plasticity in chronic spinal cats after ankle extensors neurectomy.

Bouyer LJ, Whelan PJ, Pearson KG, Rossignol S.

J Neurosci. 2001 May 15;21(10):3531-41.

33.
34.

Plasticity of neuronal networks in the spinal cord: modifications in response to altered sensory input.

Pearson KG.

Prog Brain Res. 2000;128:61-70. Review. No abstract available.

PMID:
11105669
35.

Use-dependent gain change in the reflex contribution to extensor activity in walking cats.

Pearson KG, Misiaszek JE.

Brain Res. 2000 Nov 10;883(1):131-4.

PMID:
11063996
36.

Functional role of muscle reflexes for force generation in the decerebrate walking cat.

Stein RB, Misiaszek JE, Pearson KG.

J Physiol. 2000 Jun 15;525 Pt 3:781-91.

37.

Neural adaptation in the generation of rhythmic behavior.

Pearson KG.

Annu Rev Physiol. 2000;62:723-53. Review.

PMID:
10845109
38.

Early corrective reactions of the leg to perturbations at the torso during walking in humans.

Misiaszek JE, Stephens MJ, Yang JF, Pearson KG.

Exp Brain Res. 2000 Apr;131(4):511-23.

PMID:
10803419
39.

Stretch and H reflexes in triceps surae are similar during tonic and rhythmic contractions in high decerebrate cats.

Misiaszek JE, de Serres SJ, Stein RB, Jiang W, Pearson KG.

J Neurophysiol. 2000 Apr;83(4):1941-50.

40.
41.

Editorial overview: motor control from molecules to bedside.

Marder E, Pearson KG.

Curr Opin Neurobiol. 1998 Dec;8(6):693-6. No abstract available.

PMID:
10068214
42.
43.

Enhancement and resetting of locomotor activity by muscle afferents.

Pearson KG, Misiaszek JE, Fouad K.

Ann N Y Acad Sci. 1998 Nov 16;860:203-15. Review.

PMID:
9928313
44.

Stretch of quadriceps inhibits the soleus H reflex during locomotion in decerebrate cats.

Misiaszek JE, Pearson KG.

J Neurophysiol. 1997 Dec;78(6):2975-84.

46.

From cat to man: basic aspects of locomotion relevant to motor rehabilitation of SCI.

Duysens J, Pearson KG.

NeuroRehabilitation. 1998;10(2):107-18. doi: 10.3233/NRE-1998-10203.

PMID:
24525879
48.

Plasticity in reflex pathways controlling stepping in the cat.

Whelan PJ, Pearson KG.

J Neurophysiol. 1997 Sep;78(3):1643-50.

49.
50.

Contribution of hind limb flexor muscle afferents to the timing of phase transitions in the cat step cycle.

Hiebert GW, Whelan PJ, Prochazka A, Pearson KG.

J Neurophysiol. 1996 Mar;75(3):1126-37.

PMID:
8867123

Supplemental Content

Loading ...
Support Center