Format
Sort by
Items per page

Send to

Choose Destination

Best matches for Ovečka M[au]:

Advances in Imaging Plant Cell Dynamics. Komis G et al. Plant Physiol. (2018)

Cell and Developmental Biology of Plant Mitogen-Activated Protein Kinases. Komis G et al. Annu Rev Plant Biol. (2018)

Multiscale imaging of plant development by light-sheet fluorescence microscopy. Ovečka M et al. Nat Plants. (2018)

Search results

Items: 1 to 50 of 87

1.

YODA-HSP90 module regulates phosphorylation-dependent inactivation of SPEECHLESS to control stomatal development under acute heat stress in Arabidopsis.

Samakovli D, Tichá T, Vavrdová T, Ovečka M, Luptovčiak I, Zapletalová V, Kuchařová A, Křenek P, Krasylenko Y, Margaritopoulou T, Roka L, Milioni D, Komis G, Hatzopoulos P, Šamaj J.

Mol Plant. 2020 Jan 11. pii: S1674-2052(20)30001-0. doi: 10.1016/j.molp.2020.01.001. [Epub ahead of print]

PMID:
31935463
2.

Mitochondrial Zea mays Brittle1-1 Is a Major Determinant of the Metabolic Fate of Incoming Sucrose and Mitochondrial Function in Developing Maize Endosperms.

Bahaji A, Muñoz FJ, Seguí-Simarro JM, Camacho-Fernández C, Rivas-Sendra A, Parra-Vega V, Ovecka M, Li J, Sánchez-López ÁM, Almagro G, Baroja-Fernández E, Pozueta-Romero J.

Front Plant Sci. 2019 Mar 12;10:242. doi: 10.3389/fpls.2019.00242. eCollection 2019.

3.

Multicolour three dimensional structured illumination microscopy of immunolabeled plant microtubules and associated proteins.

Vavrdová T, Šamajová O, Křenek P, Ovečka M, Floková P, Šnaurová R, Šamaj J, Komis G.

Plant Methods. 2019 Mar 9;15:22. doi: 10.1186/s13007-019-0406-z. eCollection 2019.

4.

Multiscale imaging of plant development by light-sheet fluorescence microscopy.

Ovečka M, von Wangenheim D, Tomančák P, Šamajová O, Komis G, Šamaj J.

Nat Plants. 2018 Sep;4(9):639-650. doi: 10.1038/s41477-018-0238-2. Epub 2018 Sep 5. Review.

PMID:
30185982
5.

Advanced microscopy methods for bioimaging of mitotic microtubules in plants.

Vyplelová P, Ovečka M, Komis G, Šamaj J.

Methods Cell Biol. 2018;145:129-158. doi: 10.1016/bs.mcb.2018.03.019. Epub 2018 Apr 26.

PMID:
29957201
6.

Gene Expression Pattern and Protein Localization of Arabidopsis Phospholipase D Alpha 1 Revealed by Advanced Light-Sheet and Super-Resolution Microscopy.

Novák D, Vadovič P, Ovečka M, Šamajová O, Komis G, Colcombet J, Šamaj J.

Front Plant Sci. 2018 Mar 21;9:371. doi: 10.3389/fpls.2018.00371. eCollection 2018.

7.

Cell and Developmental Biology of Plant Mitogen-Activated Protein Kinases.

Komis G, Šamajová O, Ovečka M, Šamaj J.

Annu Rev Plant Biol. 2018 Apr 29;69:237-265. doi: 10.1146/annurev-arplant-042817-040314. Epub 2018 Feb 28. Review.

PMID:
29489398
8.
9.

Katanin: A Sword Cutting Microtubules for Cellular, Developmental, and Physiological Purposes.

Luptovčiak I, Komis G, Takáč T, Ovečka M, Šamaj J.

Front Plant Sci. 2017 Nov 21;8:1982. doi: 10.3389/fpls.2017.01982. eCollection 2017. Review.

10.

Advances in Imaging Plant Cell Dynamics.

Komis G, Novák D, Ovečka M, Šamajová O, Šamaj J.

Plant Physiol. 2018 Jan;176(1):80-93. doi: 10.1104/pp.17.00962. Epub 2017 Nov 22. Review. No abstract available.

11.

Alfalfa Root Growth Rate Correlates with Progression of Microtubules during Mitosis and Cytokinesis as Revealed by Environmental Light-Sheet Microscopy.

Vyplelová P, Ovečka M, Šamaj J.

Front Plant Sci. 2017 Oct 30;8:1870. doi: 10.3389/fpls.2017.01870. eCollection 2017.

12.

Katanin Effects on Dynamics of Cortical Microtubules and Mitotic Arrays in Arabidopsis thaliana Revealed by Advanced Live-Cell Imaging.

Komis G, Luptovčiak I, Ovečka M, Samakovli D, Šamajová O, Šamaj J.

Front Plant Sci. 2017 May 24;8:866. doi: 10.3389/fpls.2017.00866. eCollection 2017.

13.

Endosomal Interactions during Root Hair Growth.

von Wangenheim D, Rosero A, Komis G, Šamajová O, Ovečka M, Voigt B, Šamaj J.

Front Plant Sci. 2016 Jan 29;6:1262. doi: 10.3389/fpls.2015.01262. eCollection 2015.

14.

Developmental Nuclear Localization and Quantification of GFP-Tagged EB1c in Arabidopsis Root Using Light-Sheet Microscopy.

Novák D, Kuchařová A, Ovečka M, Komis G, Šamaj J.

Front Plant Sci. 2016 Jan 5;6:1187. doi: 10.3389/fpls.2015.01187. eCollection 2015.

15.

Super-resolution Microscopy in Plant Cell Imaging.

Komis G, Šamajová O, Ovečka M, Šamaj J.

Trends Plant Sci. 2015 Dec;20(12):834-843. doi: 10.1016/j.tplants.2015.08.013. Epub 2015 Oct 5. Review.

PMID:
26482957
16.

Pharmacokinetic and Pharmacodynamic Characterisation of an Anti-Mouse TNF Receptor 1 Domain Antibody Formatted for In Vivo Half-Life Extension.

Goodall LJ, Ovecka M, Rycroft D, Friel SL, Sanderson A, Mistry P, Davies ML, Stoop AA.

PLoS One. 2015 Sep 9;10(9):e0137065. doi: 10.1371/journal.pone.0137065. eCollection 2015.

17.

Superresolution live imaging of plant cells using structured illumination microscopy.

Komis G, Mistrik M, Šamajová O, Ovečka M, Bartek J, Šamaj J.

Nat Protoc. 2015 Aug;10(8):1248-63. doi: 10.1038/nprot.2015.083. Epub 2015 Jul 23.

PMID:
26203822
18.

Preparation of plants for developmental and cellular imaging by light-sheet microscopy.

Ovečka M, Vaškebová L, Komis G, Luptovčiak I, Smertenko A, Šamaj J.

Nat Protoc. 2015 Aug;10(8):1234-47. doi: 10.1038/nprot.2015.081. Epub 2015 Jul 23.

PMID:
26203821
19.

Monitoring protein phosphorylation by acrylamide pendant Phos-Tag™ in various plants.

Bekešová S, Komis G, Křenek P, Vyplelová P, Ovečka M, Luptovčiak I, Illés P, Kuchařová A, Šamaj J.

Front Plant Sci. 2015 May 13;6:336. doi: 10.3389/fpls.2015.00336. eCollection 2015.

20.

Pharmacokinetic characteristics, pharmacodynamic effect and in vivo antiviral efficacy of liver-targeted interferon alpha.

Rycroft D, Sosabowski J, Coulstock E, Davies M, Morrey J, Friel S, Kelly F, Hamatake R, Ovečka M, Prince R, Goodall L, Sepp A, Walker A.

PLoS One. 2015 Feb 17;10(2):e0117847. doi: 10.1371/journal.pone.0117847. eCollection 2015. Erratum in: PLoS One. 2015;10(4):e0124463.

21.

Proteomic and biochemical analyses show a functional network of proteins involved in antioxidant defense of the Arabidopsis anp2anp3 double mutant.

Takáč T, Šamajová O, Vadovič P, Pechan T, Košútová P, Ovečka M, Husičková A, Komis G, Šamaj J.

J Proteome Res. 2014 Dec 5;13(12):5347-61. doi: 10.1021/pr500588c. Epub 2014 Oct 31.

22.

Trans-Golgi network localized small GTPase RabA1d is involved in cell plate formation and oscillatory root hair growth.

Berson T, von Wangenheim D, Takáč T, Šamajová O, Rosero A, Ovečka M, Komis G, Stelzer EH, Šamaj J.

BMC Plant Biol. 2014 Sep 27;14:252. doi: 10.1186/s12870-014-0252-0.

23.

Live microscopy analysis of endosomes and vesicles in tip-growing root hairs.

Ovečka M, Lichtscheidl I, Samaj J.

Methods Mol Biol. 2014;1209:31-44. doi: 10.1007/978-1-4939-1420-3_3.

PMID:
25117273
24.

Involvement of YODA and mitogen activated protein kinase 6 in Arabidopsis post-embryogenic root development through auxin up-regulation and cell division plane orientation.

Smékalová V, Luptovčiak I, Komis G, Šamajová O, Ovečka M, Doskočilová A, Takáč T, Vadovič P, Novák O, Pechan T, Ziemann A, Košútová P, Šamaj J.

New Phytol. 2014 Sep;203(4):1175-93. doi: 10.1111/nph.12880. Epub 2014 Jun 13.

25.

Immunofluorescent localization of MAPKs in Steedman's wax sections.

Ovečka M, Samajová O, Baluška F, Samaj J.

Methods Mol Biol. 2014;1171:117-30. doi: 10.1007/978-1-4939-0922-3_10.

PMID:
24908124
26.

Dynamics and organization of cortical microtubules as revealed by superresolution structured illumination microscopy.

Komis G, Mistrik M, Samajová O, Doskočilová A, Ovečka M, Illés P, Bartek J, Samaj J.

Plant Physiol. 2014 May;165(1):129-48. doi: 10.1104/pp.114.238477. Epub 2014 Mar 31.

27.

Salt-induced subcellular kinase relocation and seedling susceptibility caused by overexpression of Medicago SIMKK in Arabidopsis.

Ovečka M, Takáč T, Komis G, Vadovič P, Bekešová S, Doskočilová A, Šamajová V, Luptovčiak I, Samajová O, Schweighofer A, Meskiene I, Jonak C, Křenek P, Lichtscheidl I, Škultéty L, Hirt H, Šamaj J.

J Exp Bot. 2014 Jun;65(9):2335-50. doi: 10.1093/jxb/eru115. Epub 2014 Mar 19.

28.

Managing heavy metal toxicity stress in plants: biological and biotechnological tools.

Ovečka M, Takáč T.

Biotechnol Adv. 2014 Jan-Feb;32(1):73-86. doi: 10.1016/j.biotechadv.2013.11.011. Epub 2013 Dec 12. Review.

PMID:
24333465
29.

Starch biosynthesis, its regulation and biotechnological approaches to improve crop yields.

Bahaji A, Li J, Sánchez-López ÁM, Baroja-Fernández E, Muñoz FJ, Ovecka M, Almagro G, Montero M, Ezquer I, Etxeberria E, Pozueta-Romero J.

Biotechnol Adv. 2014 Jan-Feb;32(1):87-106. doi: 10.1016/j.biotechadv.2013.06.006. Epub 2013 Jul 1. Review.

PMID:
23827783
30.

Liver-targeting of interferon-alpha with tissue-specific domain antibodies.

Coulstock E, Sosabowski J, Ovečka M, Prince R, Goodall L, Mudd C, Sepp A, Davies M, Foster J, Burnet J, Dunlevy G, Walker A.

PLoS One. 2013;8(2):e57263. doi: 10.1371/journal.pone.0057263. Epub 2013 Feb 25.

31.

Cuscuta europaea plastid apparatus in various developmental stages: localization of THF1 protein.

Švubová R, Ovečka M, Pavlovič A, Slováková L, Blehová A.

Plant Signal Behav. 2013 May;8(5):e24037. doi: 10.4161/psb.24037. Epub 2013 Feb 25.

32.

Enhancing sucrose synthase activity results in increased levels of starch and ADP-glucose in maize (Zea mays L.) seed endosperms.

Li J, Baroja-Fernández E, Bahaji A, Muñoz FJ, Ovecka M, Montero M, Sesma MT, Alonso-Casajús N, Almagro G, Sánchez-López AM, Hidalgo M, Zamarbide M, Pozueta-Romero J.

Plant Cell Physiol. 2013 Feb;54(2):282-94. doi: 10.1093/pcp/pcs180. Epub 2013 Jan 3.

PMID:
23292602
33.

A sensitive method for confocal fluorescence microscopic visualization of starch granules in iodine stained samples.

Ovecka M, Bahaji A, Muñoz FJ, Almagro G, Ezquer I, Baroja-Fernández E, Li J, Pozueta-Romero J.

Plant Signal Behav. 2012 Sep 1;7(9):1146-50. doi: 10.4161/psb.21370. Epub 2012 Aug 17.

34.

Early Zn2+-induced effects on membrane potential account for primary heavy metal susceptibility in tolerant and sensitive Arabidopsis species.

Kenderesová L, Stanová A, Pavlovkin J, Durisová E, Nadubinská M, Ciamporová M, Ovecka M.

Ann Bot. 2012 Jul;110(2):445-59. doi: 10.1093/aob/mcs111. Epub 2012 May 29.

35.

Wortmannin treatment induces changes in Arabidopsis root proteome and post-Golgi compartments.

Takáč T, Pechan T, Samajová O, Ovečka M, Richter H, Eck C, Niehaus K, Samaj J.

J Proteome Res. 2012 Jun 1;11(6):3127-42. doi: 10.1021/pr201111n. Epub 2012 May 10.

PMID:
22524784
36.

Specific delivery of AtBT1 to mitochondria complements the aberrant growth and sterility phenotype of homozygous Atbt1 Arabidopsis mutants.

Bahaji A, Muñoz FJ, Ovecka M, Baroja-Fernández E, Montero M, Li J, Hidalgo M, Almagro G, Sesma MT, Ezquer I, Pozueta-Romero J.

Plant J. 2011 Dec;68(6):1115-21. doi: 10.1111/j.1365-313X.2011.04767.x. Epub 2011 Oct 13.

37.

Wall architecture with high porosity is established at the tip and maintained in growing pollen tubes of Nicotiana tabacum.

Derksen J, Janssen GJ, Wolters-Arts M, Lichtscheidl I, Adlassnig W, Ovecka M, Doris F, Steer M.

Plant J. 2011 Nov;68(3):495-506. doi: 10.1111/j.1365-313X.2011.04703.x. Epub 2011 Sep 13.

38.

Microbial volatile-induced accumulation of exceptionally high levels of starch in Arabidopsis leaves is a process involving NTRC and starch synthase classes III and IV.

Li J, Ezquer I, Bahaji A, Montero M, Ovecka M, Baroja-Fernández E, Muñoz FJ, Mérida A, Almagro G, Hidalgo M, Sesma MT, Pozueta-Romero J.

Mol Plant Microbe Interact. 2011 Oct;24(10):1165-78. doi: 10.1094/MPMI-05-11-0112.

39.

Enhancing the expression of starch synthase class IV results in increased levels of both transitory and long-term storage starch.

Gámez-Arjona FM, Li J, Raynaud S, Baroja-Fernández E, Muñoz FJ, Ovecka M, Ragel P, Bahaji A, Pozueta-Romero J, Mérida Á.

Plant Biotechnol J. 2011 Dec;9(9):1049-60. doi: 10.1111/j.1467-7652.2011.00626.x. Epub 2011 Jun 7.

40.

Arabidopsis thaliana mutants lacking ADP-glucose pyrophosphorylase accumulate starch and wild-type ADP-glucose content: further evidence for the occurrence of important sources, other than ADP-glucose pyrophosphorylase, of ADP-glucose linked to leaf starch biosynthesis.

Bahaji A, Li J, Ovecka M, Ezquer I, Muñoz FJ, Baroja-Fernández E, Romero JM, Almagro G, Montero M, Hidalgo M, Sesma MT, Pozueta-Romero J.

Plant Cell Physiol. 2011 Jul;52(7):1162-76. doi: 10.1093/pcp/pcr067. Epub 2011 May 29.

PMID:
21624897
41.

Dual targeting to mitochondria and plastids of AtBT1 and ZmBT1, two members of the mitochondrial carrier family.

Bahaji A, Ovecka M, Bárány I, Risueño MC, Muñoz FJ, Baroja-Fernández E, Montero M, Li J, Hidalgo M, Sesma MT, Ezquer I, Testillano PS, Pozueta-Romero J.

Plant Cell Physiol. 2011 Apr;52(4):597-609. doi: 10.1093/pcp/pcr019. Epub 2011 Feb 16.

PMID:
21330298
42.

A suggested model for potato MIVOISAP involving functions of central carbohydrate and amino acid metabolism, as well as actin cytoskeleton and endocytosis.

Ezquer I, Li J, Ovecka M, Baroja-Fernández E, Muñoz FJ, Montero M, Díaz de Cerio J, Hidalgo M, Sesma MT, Bahaji A, Etxeberria E, Pozueta-Romero J.

Plant Signal Behav. 2010 Dec;5(12):1638-41. Epub 2010 Dec 1.

43.

Structural sterols are involved in both the initiation and tip growth of root hairs in Arabidopsis thaliana.

Ovecka M, Berson T, Beck M, Derksen J, Samaj J, Baluska F, Lichtscheidl IK.

Plant Cell. 2010 Sep;22(9):2999-3019. doi: 10.1105/tpc.109.069880. Epub 2010 Sep 14.

44.

Microbial volatile emissions promote accumulation of exceptionally high levels of starch in leaves in mono- and dicotyledonous plants.

Ezquer I, Li J, Ovecka M, Baroja-Fernández E, Muñoz FJ, Montero M, Díaz de Cerio J, Hidalgo M, Sesma MT, Bahaji A, Etxeberria E, Pozueta-Romero J.

Plant Cell Physiol. 2010 Oct;51(10):1674-93. doi: 10.1093/pcp/pcq126. Epub 2010 Aug 24.

PMID:
20739303
45.

Starch granule initiation in Arabidopsis requires the presence of either class IV or class III starch synthases.

Szydlowski N, Ragel P, Raynaud S, Lucas MM, Roldán I, Montero M, Muñoz FJ, Ovecka M, Bahaji A, Planchot V, Pozueta-Romero J, D'Hulst C, Mérida A.

Plant Cell. 2009 Aug;21(8):2443-57. doi: 10.1105/tpc.109.066522. Epub 2009 Aug 7.

46.

Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield.

Baroja-Fernández E, Muñoz FJ, Montero M, Etxeberria E, Sesma MT, Ovecka M, Bahaji A, Ezquer I, Li J, Prat S, Pozueta-Romero J.

Plant Cell Physiol. 2009 Sep;50(9):1651-62. doi: 10.1093/pcp/pcp108. Epub 2009 Jul 16.

PMID:
19608713
47.

Plasmolysis and cell wall deposition in wheat root hairs under osmotic stress.

Volgger M, Lang I, Ovecka M, Lichtscheidl I.

Protoplasma. 2010 Jul;243(1-4):51-62. doi: 10.1007/s00709-009-0055-6. Epub 2009 Jun 17.

PMID:
19533299
48.

Plastidial localization of a potato 'Nudix' hydrolase of ADP-glucose linked to starch biosynthesis.

Muñoz FJ, Baroja-Fernández E, Ovecka M, Li J, Mitsui T, Sesma MT, Montero M, Bahaji A, Ezquer I, Pozueta-Romero J.

Plant Cell Physiol. 2008 Nov;49(11):1734-46. doi: 10.1093/pcp/pcn145. Epub 2008 Sep 18.

PMID:
18801762
49.

Non-invasive microscopy of tip-growing root hairs as a tool for study of dynamic and cytoskeleton-based vesicle trafficking.

Ovecka M, Baluska F, Lichtscheidl I.

Cell Biol Int. 2008 May;32(5):549-53. Epub 2007 Nov 21.

PMID:
18158257
50.

Supplemental Content

Loading ...
Support Center