Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 36

1.

Direct observation of intermediates in the SufS cysteine desulfurase reaction reveals functional roles of conserved active-site residues.

Blahut M, Wise CE, Bruno MR, Dong G, Makris TM, Frantom PA, Dunkle JA, Outten FW.

J Biol Chem. 2019 Aug 16;294(33):12444-12458. doi: 10.1074/jbc.RA119.009471. Epub 2019 Jun 27.

PMID:
31248989
2.

Structural Evidence for Dimer-Interface-Driven Regulation of the Type II Cysteine Desulfurase, SufS.

Dunkle JA, Bruno MR, Outten FW, Frantom PA.

Biochemistry. 2019 Feb 12;58(6):687-696. doi: 10.1021/acs.biochem.8b01122. Epub 2019 Jan 7.

3.

Evidence that a respiratory shield in Escherichia coli protects a low-molecular-mass FeII pool from O2-dependent oxidation.

Wofford JD, Bolaji N, Dziuba N, Outten FW, Lindahl PA.

J Biol Chem. 2019 Jan 4;294(1):50-62. doi: 10.1074/jbc.RA118.005233. Epub 2018 Oct 18.

4.

Nickel exposure reduces enterobactin production in Escherichia coli.

Washington-Hughes CL, Ford GT, Jones AD, McRae K, Outten FW.

Microbiologyopen. 2019 Apr;8(4):e00691. doi: 10.1002/mbo3.691. Epub 2018 Jul 30.

5.

Conserved cysteine residues are necessary for nickel-induced allosteric regulation of the metalloregulatory protein YqjI (NfeR) in E. coli.

Blahut M, Dzul S, Wang S, Kandegedara A, Grossoehme NE, Stemmler T, Outten FW.

J Inorg Biochem. 2018 Jul;184:123-133. doi: 10.1016/j.jinorgbio.2018.04.016. Epub 2018 Apr 26.

PMID:
29723740
6.

Changes in Protein Dynamics in Escherichia coli SufS Reveal a Possible Conserved Regulatory Mechanism in Type II Cysteine Desulfurase Systems.

Kim D, Singh H, Dai Y, Dong G, Busenlehner LS, Outten FW, Frantom PA.

Biochemistry. 2018 Sep 4;57(35):5210-5217. doi: 10.1021/acs.biochem.7b01275. Epub 2018 Apr 5.

7.

Heme dynamics and trafficking factors revealed by genetically encoded fluorescent heme sensors.

Hanna DA, Harvey RM, Martinez-Guzman O, Yuan X, Chandrasekharan B, Raju G, Outten FW, Hamza I, Reddi AR.

Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7539-44. doi: 10.1073/pnas.1523802113. Epub 2016 May 31.

8.

Functional Dynamics Revealed by the Structure of the SufBCD Complex, a Novel ATP-binding Cassette (ABC) Protein That Serves as a Scaffold for Iron-Sulfur Cluster Biogenesis.

Hirabayashi K, Yuda E, Tanaka N, Katayama S, Iwasaki K, Matsumoto T, Kurisu G, Outten FW, Fukuyama K, Takahashi Y, Wada K.

J Biol Chem. 2015 Dec 11;290(50):29717-31. doi: 10.1074/jbc.M115.680934. Epub 2015 Oct 15.

9.

SufE D74R Substitution Alters Active Site Loop Dynamics To Further Enhance SufE Interaction with the SufS Cysteine Desulfurase.

Dai Y, Kim D, Dong G, Busenlehner LS, Frantom PA, Outten FW.

Biochemistry. 2015 Aug 11;54(31):4824-33. doi: 10.1021/acs.biochem.5b00663. Epub 2015 Jul 31.

10.

Recent advances in the Suf Fe-S cluster biogenesis pathway: Beyond the Proteobacteria.

Outten FW.

Biochim Biophys Acta. 2015 Jun;1853(6):1464-9. doi: 10.1016/j.bbamcr.2014.11.001. Epub 2014 Nov 7. Review.

11.

Interplay between oxygen and Fe-S cluster biogenesis: insights from the Suf pathway.

Boyd ES, Thomas KM, Dai Y, Boyd JM, Outten FW.

Biochemistry. 2014 Sep 23;53(37):5834-47. doi: 10.1021/bi500488r. Epub 2014 Sep 11. Review.

12.

Communication between binding sites is required for YqjI regulation of target promoters within the yqjH-yqjI intergenic region.

Wang S, Blahut M, Wu Y, Philipkosky KE, Outten FW.

J Bacteriol. 2014 Sep;196(17):3199-207. doi: 10.1128/JB.01835-14. Epub 2014 Jun 30.

13.

Escherichia coli SufE sulfur transfer protein modulates the SufS cysteine desulfurase through allosteric conformational dynamics.

Singh H, Dai Y, Outten FW, Busenlehner LS.

J Biol Chem. 2013 Dec 20;288(51):36189-200. doi: 10.1074/jbc.M113.525709. Epub 2013 Nov 6.

14.

Lability and liability of endogenous copper pools.

Outten FW, Munson GP.

J Bacteriol. 2013 Oct;195(20):4553-5. doi: 10.1128/JB.00891-13. Epub 2013 Aug 2. No abstract available.

15.

The E. coli SufS-SufE sulfur transfer system is more resistant to oxidative stress than IscS-IscU.

Dai Y, Outten FW.

FEBS Lett. 2012 Nov 16;586(22):4016-22. doi: 10.1016/j.febslet.2012.10.001. Epub 2012 Oct 12.

16.

Separate FeS scaffold and carrier functions for SufB₂C₂ and SufA during in vitro maturation of [2Fe2S] Fdx.

Chahal HK, Outten FW.

J Inorg Biochem. 2012 Nov;116:126-34. doi: 10.1016/j.jinorgbio.2012.06.008. Epub 2012 Jun 19.

17.

Fur and the novel regulator YqjI control transcription of the ferric reductase gene yqjH in Escherichia coli.

Wang S, Wu Y, Outten FW.

J Bacteriol. 2011 Jan;193(2):563-74. doi: 10.1128/JB.01062-10. Epub 2010 Nov 19.

18.

SufD and SufC ATPase activity are required for iron acquisition during in vivo Fe-S cluster formation on SufB.

Saini A, Mapolelo DT, Chahal HK, Johnson MK, Outten FW.

Biochemistry. 2010 Nov 2;49(43):9402-12. doi: 10.1021/bi1011546.

19.

The SufBCD Fe-S scaffold complex interacts with SufA for Fe-S cluster transfer.

Chahal HK, Dai Y, Saini A, Ayala-Castro C, Outten FW.

Biochemistry. 2009 Nov 10;48(44):10644-53. doi: 10.1021/bi901518y.

20.

Native Escherichia coli SufA, coexpressed with SufBCDSE, purifies as a [2Fe-2S] protein and acts as an Fe-S transporter to Fe-S target enzymes.

Gupta V, Sendra M, Naik SG, Chahal HK, Huynh BH, Outten FW, Fontecave M, Ollagnier de Choudens S.

J Am Chem Soc. 2009 May 6;131(17):6149-53. doi: 10.1021/ja807551e.

21.

Molecular dynamism of Fe-S cluster biosynthesis implicated by the structure of the SufC(2)-SufD(2) complex.

Wada K, Sumi N, Nagai R, Iwasaki K, Sato T, Suzuki K, Hasegawa Y, Kitaoka S, Minami Y, Outten FW, Takahashi Y, Fukuyama K.

J Mol Biol. 2009 Mar 20;387(1):245-58. doi: 10.1016/j.jmb.2009.01.054. Epub 2009 Jan 31.

22.

IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression.

Wu Y, Outten FW.

J Bacteriol. 2009 Feb;191(4):1248-57. doi: 10.1128/JB.01086-08. Epub 2008 Dec 12.

23.

Iron-based redox switches in biology.

Outten FW, Theil EC.

Antioxid Redox Signal. 2009 May;11(5):1029-46. doi: 10.1089/ARS.2008.2296. Review.

24.

The impact of O(2) on the Fe-S cluster biogenesis requirements of Escherichia coli FNR.

Mettert EL, Outten FW, Wanta B, Kiley PJ.

J Mol Biol. 2008 Dec 26;384(4):798-811. doi: 10.1016/j.jmb.2008.09.080. Epub 2008 Oct 10.

25.

Fe-S cluster assembly pathways in bacteria.

Ayala-Castro C, Saini A, Outten FW.

Microbiol Mol Biol Rev. 2008 Mar;72(1):110-25, table of contents. doi: 10.1128/MMBR.00034-07. Review.

26.

Iron-sulfur clusters as oxygen-responsive molecular switches.

Outten FW.

Nat Chem Biol. 2007 Apr;3(4):206-7. No abstract available.

PMID:
17372605
27.

SufE transfers sulfur from SufS to SufB for iron-sulfur cluster assembly.

Layer G, Gaddam SA, Ayala-Castro CN, Ollagnier-de Choudens S, Lascoux D, Fontecave M, Outten FW.

J Biol Chem. 2007 May 4;282(18):13342-50. Epub 2007 Mar 9.

28.

Mutational analysis to define an activating region on the redox-sensitive transcriptional regulator OxyR.

Wang X, Mukhopadhyay P, Wood MJ, Outten FW, Opdyke JA, Storz G.

J Bacteriol. 2006 Dec;188(24):8335-42. Epub 2006 Sep 29.

29.

Repair of oxidized iron-sulfur clusters in Escherichia coli.

Djaman O, Outten FW, Imlay JA.

J Biol Chem. 2004 Oct 22;279(43):44590-9. Epub 2004 Aug 12.

30.

A suf operon requirement for Fe-S cluster assembly during iron starvation in Escherichia coli.

Outten FW, Djaman O, Storz G.

Mol Microbiol. 2004 May;52(3):861-72.

31.
32.

Spectroscopy of Cu(II)-PcoC and the multicopper oxidase function of PcoA, two essential components of Escherichia coli pco copper resistance operon.

Huffman DL, Huyett J, Outten FW, Doan PE, Finney LA, Hoffman BM, O'Halloran TV.

Biochemistry. 2002 Aug 6;41(31):10046-55.

PMID:
12146969
33.

The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli.

Outten FW, Huffman DL, Hale JA, O'Halloran TV.

J Biol Chem. 2001 Aug 17;276(33):30670-7. Epub 2001 Jun 8.

34.

Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12.

Munson GP, Lam DL, Outten FW, O'Halloran TV.

J Bacteriol. 2000 Oct;182(20):5864-71.

35.

Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, cueR.

Outten FW, Outten CE, Hale J, O'Halloran TV.

J Biol Chem. 2000 Oct 6;275(40):31024-9.

36.

Supplemental Content

Loading ...
Support Center